Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65511
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬(Yih-Peng Chiou)
dc.contributor.authorLu-Kai Liaoen
dc.contributor.author廖祿凱zh_TW
dc.date.accessioned2021-06-16T23:47:30Z-
dc.date.available2015-08-01
dc.date.copyright2012-07-31
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation[1] S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL's,” IEEE Photonics Technology Letters, vol. 10, pp. 1205-1207, Sep. 1998.
[2] J. Kim, D.-U. Kim, J. Lee, H. Jeon, Y. Park, and Y. S. Choi, “AlGaN membrane grating reflector,” Applied Physics Letters, vol. 95, pp. 021102-021104, Jul. 2009.
[3] J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Optics Express, vol. 17, pp. 22535-22542, Dec. 2009.
[4] J. M. Kontio, J. Simonen, K. Leinonen, M. Kuittinen, and T. Niemi, “Broadband infrared mirror using guided-mode resonance in a subwavelength germanium grating,” Optics Letters, vol. 35, pp. 2564-2566, Aug. 2010.
[5] C. Chevallier, N. Fressengeas, F. Genty, and J. Jacquet, “Optimized sub-wavelength grating mirror design for mid-infrared wavelength range,” Applied Physics A, vol. 103, pp. 1139-1144, Oct. 2010.
[6] J. H. Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, sub-wavelength grating, and photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Optics Express, vol. 15, pp. 10330-10339, Aug. 2007.
[7] Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and Its applications in optoelectronic devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, pp. 1485-1499, Sep./Oct. 2009.
[8] S. O. Kasap, Optoelectronics and Photonics : Principles and Practices. Upper Saddle River, NJ: Prentice Hall, 2001.
[9] Princeton Optronics. “Vertical-cavity surface-emitting laser technology.” Available: http://www.princetonoptronics.com/pdfs/VCSEL technology v1.pdf
[10] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philosophical Magazine Series 6, vol. 4, pp. 396-402, Jun. 1902.
[11] A. H. a. A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Applied Optics, vol. 4, pp. 1275-1297, Oct. 1965.
[12] M. Neviere, R. Petit, and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Optics Communications, vol. 8, pp. 113-117, Jun. 1973.
[13] M. Neviere, P. Vincent, R. Petit, and M. Cadilhac, “Systematic study of resonances of holographic thin film couplers,” Optics Communications, vol. 9, pp. 48-53, Sep. 1973.
[14] M. Gale, “Diffraction, beauty and commerce,” Physics World, pp. 24–29, Oct. 1989.
[15] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Applied Optics, vol. 32, pp. 2606-2613, May 10 1993.
[16] S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 7, pp. 1470-1474, Aug. 1990.
[17] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 18, pp. 2109-2120, Sep. 2001.
[18] D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 17, pp. 1241-1249, Jul. 2000.
[19] Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Technology Letters, vol. 14, pp. 1091-1093, Aug. 2002.
[20] A. Greenwell, S. Boonruang, and M. G. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Applied Optics, vol. 46, pp. 6355-6361, Sep. 2007.
[21] C. F. R. Mateus, M. C. Y. Huang, Y. F. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technology Letters, vol. 16, pp. 518-520, Feb. 2004.
[22] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12-1.62 μm) using a subwavelength grating,” IEEE Photonics Technology Letters, vol. 16, pp. 1676-1678, Jul. 2004.
[23] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nature Photonics, vol. 1, pp. 119-122, Feb. 2007.
[24] Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photonics Technology Letters, vol. 20, pp. 434-436, Mar./Apr. 2008.
[25] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Applied Physics Letters, vol. 92, p. 171108, Apr. 2008.
[26] X. Gu, A. Imamura, and F. Koyama, “Wavelength trimming of vertical-cavity surface-emitting lasers with high-contrast subwavelength grating,” Japanese Journal of Applied Physics, vol. 50, p. 100207, Oct. 2011.
[27] Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Optics Express, vol. 16, pp. 17282-17287, Oct. 2008.
[28] Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Optics Express, vol. 17, pp. 1508-1517, Feb. 2009.
[29] V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Optics Express, vol. 18, pp. 16973-16988, Aug. 2010.
[30] A. Ricciardi, S. Campopiano, A. Cusano, T. F. Krauss, and L. O'Faolain, “Broadband mirrors in the near-infrared based on subwavelength gratings in SOI,” IEEE Photonics Journal, vol. 2, pp. 696-702, Oct. 2010.
[31] K. J. Lee and R. Magnusson, “Single-layer resonant high reflector in TE polarization: theory and experiment,” IEEE Photonics Journal, vol. 3, pp. 123-129, Feb. 2011.
[32] A. Ahmed, M. Liscidini, and R. Gordon, “Design and analysis of high-index-contrast gratings using coupled mode theory,” IEEE Photonics Journal, pp. 884-893, Dec. 2010.
[33] I.-S. Chung, J. Mork, P. Gilet, and A. Chelnokov, “Subwavelength grating-mirror VCSEL with a thin oxide gap,” IEEE Photonics Technology Letters, vol. 20, pp. 105-107, Jan./Feb. 2008.
[34] S. Block, E. Gamet, and F. Pigeon, “Semiconductor laser with external resonant grating mirror,” IEEE Journal of Quantum Electronics, vol. 41, pp. 1049-1053, Aug. 2005.
[35] A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided mode resonance filter as a spectrally selective feedback element in a double-cladding optical fiber laser,” IEEE Photonics Technology Letters, vol. 19, pp. 2030-2032, Nov./Dec. 2007.
[36] Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Japanese Journal of Applied Physics, vol. 45, pp. 1883-1885, Mar. 2006.
[37] N. Destouches, J. C. Pommier, O. Parriaux, and T. Clausnitzer, “Narrow band resonant grating of 100% reflection under normal incidence,” Optics Express, vol. 14, pp. 12613-12622, Dec. 2006.
[38] N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, “Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells,” IEEE Transactions on Electron Devices, vol. 54, pp. 1926-1933, Aug. 2007.
[39] C. Y. Lin, F. C. Chien, L. Y. Yu, C. W. Chang, K. C. Chiu, and S. J. Chen, “Surface plasmon resonance biosensors with subwavelength grating waveguide ” Plasmonics in Biology and Medicine IV, vol. 6450, pp. L4500-L4500, 2007.
[40] M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 73, pp. 1105-1112, Sep. 1983.
[41] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 12, pp. 1068-1076, May 1995.
[42] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings - enhanced transmittance matrix approach,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 12, pp. 1077-1086, May 1995.
[43] S. Peng and G. M. Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 12, pp. 1087-1096, May 1995.
[44] P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 779-784, Apr. 1996.
[45] L. F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 13, pp. 1870-1876, Sep. 1996.
[46] P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” Journal of the Optical Society of America A-Optics Image Science and Vision, vol. 14, pp. 1592-1598, Jul. 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65511-
dc.description.abstract在本篇論文中,我們將專注於利用嚴謹的耦合波展開法(rigorous coupled wave analysis, RCWA)這種廣泛被利用在電磁計算的數值方法設計並分析一維次波長的光柵反射器,目的是希望能夠不需要利用非常複雜的幾何結構就可以製造出良好反射器的效果。以實用的角度來講,反射器的反射效率將在共振腔的設計上扮演決定性的角色,並且,近二十年來,許多研究指出光柵式反射器確實有可能應用在面射型雷射(Vertical-cavity surface-emitting lasers, VCSELs)上。在我們的研究之中將分別找尋正向入射時TE與TM極化在不同折射率對比之下光柵反射器的結構參數,並且直接利用RCWA這種數值方法畫出場形以及分析電磁波的相位變化來討論為什麼這種次波長的光柵結構可以具有強反射的物理特性。在我們的模擬工作中,折射率對比將分類為高折射率對比、中等折射率對比、低折射率對比的狀況,並且在每個狀況中舉出若干範例。其中,我們對中等折射率對比和低折射率對比的狀況花費較多心力,經過模擬我們認為經過妥善的設計,儘管在折射率對比差異較小的狀況下仍然有可能利用光柵反射器製造出高反射。除了正向入射的研究之外,我們也嘗試討論沿光柵溝槽方向有一個夾角入射的情況,希望透過妥善的設計讓光柵反射器有讓電磁波在低吸收性損耗介質中傳導的可能。zh_TW
dc.description.abstractIn this thesis, we devote to design and study one-dimensional subwavelength grating reflector by rigorous coupled wave analysis (RCWA), which is a famous numerical method in electromagnetic problem calculation. Our goal is to make a high reflection efficiency device without complicate geometric structure. In view of practical applications, reflection efficiency of a reflector plays an important role in designing a resonance cavity. In addition, lots of researches in past two decades have shown that grating reflector is possible to be used in vertical-cavity surface-emitting lasers (VCSELs). In our research, we will first try to design the parameters of grating reflector under normal incidence in different refractive index contrast of grating for TE and TM polarization respectively; furthermore, we will plot the field patterns and observe the phase difference between incident, reflection and transmission waves by RCWA calculation in order to figure out why such device could be a nice reflector. In our simulation, refractive index contrast difference is classified as high index contrast, medium index contrast, and low index contrast cases and we will show at least one example in each case. Among them, we will pay more attention on medium index contrast and low index contrast cases. After simulation, we consider that it is still possible to obtain high reflection efficiency in low index contrast case by properly designing parameters of grating reflector. In addition to the case of normal incidence, we also try to study the case of incident waves has an angle between those parallel grating bars. We hope to find the possibility to guide wave in low absorption loss medium by properly designing this kind of grating reflector.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:47:30Z (GMT). No. of bitstreams: 1
ntu-101-R99941039-1.pdf: 27948126 bytes, checksum: de5fde2873a9c7b072e2440ee9799219 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xviii
第 1 章 緒論 1
1.1 歷史背景 1
1.1.1 面射型雷射(VCSELs)的光學系統 1
1.1.2 光柵式反射器使用在面射型雷射的優點與缺點 3
1.2 文獻回顧 5
1.2.1 繞射理論與光柵研究 5
1.2.2 M. G. Moharam 與美國佛羅里達中央大學 (University of Central Florida, UCF) 團隊的研究 7
1.2.3 Connie J. Chang-Hasnaian 與美國加州大學 (University of California at Berkeley, UCB) 團隊的研究 12
1.3 研究動機與概要 17
第 2 章 理論模擬 21
2.1 TE偏振嚴謹的耦合波展開法 23
2.2 TM偏振嚴謹的耦合波展開法 36
2.3 三維(Conical)嚴謹的耦合波展開法 49
2.4 光柵式反射器的設計概念與操作實務 72
2.4.1 正向入射光柵式反射器 72
2.4.2 平行溝槽方向入射光柵式反射器 76
第 3 章 正向入射光柵式反射器模擬 79
3.1 TE偏振正向入射 79
3.1.1 中等折射率對比狀況 79
3.1.1.1 折射率對比 2.0/1.0 79
3.1.2 低折射率對比的狀況 104
3.1.2.1 折射率對比 1.5/1.0 104
3.1.2.2 折射率對比 1.2/1.0 123
3.1.2.3 折射率對比 1.05/1.0 132
3.1.3 高折射率對比的狀況 147
3.1.3.1 折射率對比 3.5/1.0 147
3.2 TM偏振正向入射 164
3.2.1 中等折射率對比狀況 164
3.2.1.1 折射率對比 2.0/1.0 164
3.2.1.2 折射率對比 2.4/1.0 183
3.2.2 低折射率對比狀況 204
3.2.2.1 折射率對比 1.5/1.0 204
3.2.2.2 折射率對比 1.1/1.0 214
3.2.3 高折射率對比狀況 225
3.2.3.1 折射率對比 3.5/1.0 225
第 4 章 平行溝槽方向入射光柵式反射器 235
4.1 設計目的 235
4.2 設計範例 236
4.2.1 類TM極化(TM like)折射率對比2.0/1.0設計角度75 236
4.2.2 類TM極化(TM like)折射率對比1.05/1.0設計角度75 245
第 5 章 結論 254
REFERENCE 256
dc.language.isozh-TW
dc.title以嚴謹耦合波分析次波長光柵反射器zh_TW
dc.titleRigorous Coupled Wave Analysis of Subwavelength Grating Reflectorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee毛明華(Ming-Hua Mao),馮開明(Kai-Ming Feng),賴志賢(Chih-Hsien Lai),王子建(Tzyy-Jiann Wang)
dc.subject.keyword嚴謹的耦合波展開法,光柵反射器,zh_TW
dc.subject.keywordRigorous Coupled Wave Analysis,Grating Reflector,en
dc.relation.page260
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
27.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved