請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65499完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志(Ting-Chih Liao) | |
| dc.contributor.author | Yu-Ping Lin | en |
| dc.contributor.author | 林育平 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:46:46Z | - |
| dc.date.available | 2015-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-23 | |
| dc.identifier.citation | 1. R. Garjonyte, Y. Yigzaw, R. Meskys, A. Malinauskas, and L. Gorton, 'Prussian Blue- and lactate oxidase-based amperometric biosensor for lactic acid'. Sensor Actuat B-Chem, 2001. 79 (1): p. 33.
2. F. Ricci, C. Goncalves, A. Amine, L. Gorton, G. Palleschi, and D. Moscone, 'Electroanalytical study of Prussian Blue modified glassy carbon paste electrodes'. Electroanalysis, 2003. 15 (14): p. 1204. 3. A.A. Karyakin, E.E. Karyakina, and L. Gorton, 'Prussian-Blue-based amperometric biosensors in flow-injection analysis'. Talanta, 1996. 43 (9): p. 1597. 4. X.C. Zhao, M.N. Zhang, Y.T. Long, and Z.F. Ding, 'Redox reactions of reactive oxygen species in aqueous solutions as the probe for scanning electrochemical microscopy of single live T24 cells'. Can J Chem, 2010. 88 (6): p. 569. 5. E. Csoregi, L. Gorton, G. Markovarga, A.J. Tudos, and W.T. Kok, 'Peroxidase-Modified Carbon-Fiber Microelectrodes in Flow-through Detection of Hydrogen-Peroxide and Organic Peroxides'. Anal Chem, 1994. 66 (21): p. 3604. 6. T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, and G. MarkoVarga, 'Peroxidase-modified electrodes: Fundamentals and application'. Anal. Chim. Acta., 1996. 330 (2-3): p. 123. 7. A. Lindgren, T. Ruzgas, L. Gorton, E. Csoregi, G.B. Ardila, I.Y. Sakharov, and I.G. Gazaryan, 'Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer'. Biosens Bioelectron, 2000. 15 (9-10): p. 491. 8. S.S. Razola, B.L. Ruiz, N.M. Diez, H.B. Mark, and J.M. Kauffmann, 'Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode'. Biosens Bioelectron, 2002. 17 (11-12): p. 921. 9. A.A. Karyakin, 'Prussian Blue and its analogues: Electrochemistry and analytical applications'. Electroanalysis, 2001. 13 (10): p. 813. 10. R. Koncki, 'Chemical sensors and biosensors based on Prussian blues'. Crit Rev Anal Chem, 2002. 32 (1): p. 79. 11. N.R. de Tacconi, K. Rajeshwar, and R.O. Lezna, 'Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications'. Chem Mater, 2003. 15 (16): p. 3046. 12. K. Itaya, N. Shoji, and I. Uchida, 'Catalysis of the Reduction of Molecular-Oxygen to Water at Prussian Blue Modified Electrodes'. J Am Chem Soc, 1984. 106 (12): p. 3423. 13. A.A. Karyakin, O.V. Gitelmacher, and E.E. Karyakina, 'A High-Sensitive Glucose Amperometric Biosensor Based on Prussian-Blue Modified Electrodes'. Anal Lett, 1994. 27 (15): p. 2861. 14. A.A. Karyakin, O.V. Gitelmacher, and E.E. Karyakina, 'Prussian Blue Based First-Generation Biosensor - a Sensitive Amperometric Electrode for Glucose'. Anal Chem, 1995. 67 (14): p. 2419. 15. J.F. Keggin, Miles, F.D.,, 'Structures and formulae of the Prussian Blues and related compounds'. Nature, 1936. 137: p. 577. 16. A. Ludi, 'Structural Chemistry of Polynuclear Transition Metal Cyanides'. Chimia, 1970. 24 (12): p. 445. 17. V.D. Neff, 'Electrochemical Oxidation and Reduction of Thin-Films of Prussian Blue'. J Electrochem Soc, 1978. 125 (6): p. 886. 18. D. Ellis, M. Eckhoff, and V.D. Neff, 'Electrochromism in the Mixed-Valence Hexacyanides .1. Voltammetric and Spectral Studies of the Oxidation and Reduction of Thin-Films of Prussian Blue'. J Phys Chem-Us, 1981. 85 (9): p. 1225. 19. K. Itaya, H. Akahoshi, and S. Toshima, 'Electrochemistry of Prussian Blue Modified Electrodes - an Electrochemical Preparation Method'. J Electrochem Soc, 1982. 129 (7): p. 1498. 20. F. Ricci and G. Palleschi, 'Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes'. Biosens Bioelectron, 2005. 21 (3): p. 389. 21. A.A. Karyakin, E.E. Karyakina, and L. Gorton, 'The electrocatalytic activity of Prussian blue in hydrogen peroxide reduction studied using a wall-jet electrode with continuous flow'. J Electroanal Chem, 1998. 456 (1-2): p. 97. 22. R. Garjonyte and A. Malinauskas, 'Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates'. Sensor Actuat B-Chem, 1999. 56 (1-2): p. 93. 23. R. Garjonyte and A. Malinauskas, 'Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes'. Biosens Bioelectron, 2000. 15 (9-10): p. 445. 24. Q.J. Chi and S.J. Dong, 'Amperometric Biosensors Based on the Immobilization of Oxidases in a Prussian Blue Film by Electrochemical Codeposition'. Anal. Chim. Acta., 1995. 310 (3): p. 429. 25. J.J. GarciaJareno, J. NavarroLaboulais, and F. Vicente, 'Electrochemical study of Nafion membranes/Prussian blue films on ITO electrodes'. Electrochim Acta, 1996. 41 (17): p. 2675. 26. D. Moscone, D. D'Ottavi, D. Compagnone, G. Palleschi, and A. Amine, 'Construction and analytical characterization of Prussian Blue-based carbon paste electrodes and their assembly as oxidase enzyme sensors'. Anal Chem, 2001. 73 (11): p. 2529. 27. F. Ricci, A. Amine, G. Palleschi, and D. Moscone, 'Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability'. Biosens Bioelectron, 2003. 18 (2-3): p. 165. 28. J.Y. Hu, Y.P. Lin, and Y.C. Liao, 'Inkjet Printed Prussian Blue Films for Hydrogen Peroxide Detection'. Anal Sci, 2012. 28 (2): p. 135. 29. D.E. Stilwell, K.H. Park, and M.H. Miles, 'Electrochemical Studies of the Factors Influencing the Cycle Stability of Prussian Blue Films'. J Appl Electrochem, 1992. 22 (4): p. 325. 30. B.J. Feldman and R.W. Murray, 'Electron-Diffusion in Wet and Dry Prussian Blue Films on Interdigitated Array Electrodes'. Inorg Chem, 1987. 26 (11): p. 1702. 31. A.A. Karyakin, E.E. Karyakina, and L. Gorton, 'On the mechanism of H2O2 reduction at Prussian Blue modified electrodes'. Electrochem Commun, 1999. 1 (2): p. 78. 32. Y.P. Ling and L.Y. Heng, 'A Potentiometric Formaldehyde Biosensor Based on Immobilization of Alcohol Oxidase on Acryloxysuccinimide-modified Acrylic Microspheres'. Sensors-Basel, 2010. 10 (11): p. 9963. 33. T.B. Goriushkina, L.V. Shkotova, G.Z. Gayda, H.M. Klepach, M.V. Gonchar, A.P. Soldatkin, and S.V. Dzyadevych, 'Amperometric biosensor based on glycerol oxidase for glycerol determination'. Sensor Actuat B-Chem, 2010. 144 (2): p. 361. 34. M.S. Lin and W.C. Shih, 'Chromium hexacyanoferrate based glucose biosensor'. Anal. Chim. Acta., 1999. 381 (2-3): p. 183. 35. M. Nakayama, M. Iino, and K. Ogura, 'In situ FTIR studies on Prussian blue (PB)-, polyaniline (PAn)- and inner PB vertical bar outer PAn film-modified electrodes'. J Electroanal Chem, 1997. 440 (1-2): p. 125. 36. R. Garjonyte and A. Malinauskas, 'Amperometric glucose biosensor based on glucose oxidase immobilized in poly(o-phenylenediamine) layer'. Sensor Actuat B-Chem, 1999. 56 (1-2): p. 85. 37. S.G. Wu, J.P. Liu, X. Bai, and W.G. Tan, 'Stability Improvement of Prussian Blue by a Protective Cellulose Acetate Membrane for Hydrogen Peroxide Sensing in Neutral Media'. Electroanalysis, 2010. 22 (16): p. 1906. 38. I.L. de Mattos, L. Gorton, T. Ruzgas, and A.A. Karyakin, 'Sensor for hydrogen peroxide based on Prussian Blue modified electrode: Improvement of the operational stability'. Anal Sci, 2000. 16 (8): p. 795. 39. L.V. Lukachova, E.A. Kotel'nikova, D. D'Ottavi, E.A. Shkerin, E.E. Karyakinia, D. Moscone, G. Palleschi, A. Curulli, and A.A. Karyakin, 'Nonconducting polymers on Prussian Blue modified electrodes: Improvement of selectivity and stability of the advanced H2O2 transducer'. Ieee Sens J, 2003. 3 (3): p. 326. 40. J.C. Wojdel, 'First principles calculations on the influence of water-filled cavities on the electronic structure of Prussian Blue'. J Mol Model, 2009. 15 (6): p. 567. 41. R.A. Huggins, 'Mixed-conducting host structures into which either cations or anions can be inserted'. Solid State Ionics, 1998. 113: p. 533. 42. L.L. Zhang and X.S. Zhao, 'Carbon-based materials as supercapacitor electrodes'. Chem Soc Rev, 2009. 38 (9): p. 2520. 43. A.J. Bard and L.R. Faulkner, Electrochemical methods : fundamentals and applications. 2nd ed2001, New York: John Wiley. xxi. 44. G. Decher, 'Fuzzy nanoassemblies: Toward layered polymeric multicomposites'. Science, 1997. 277 (5330): p. 1232. 45. A. Malinauskas, R. Araminaite, G. Mickeviciute, and R. Garjonyte, 'Evaluation of operational stability of Prussian blue- and cobalt hexacyanoferrate-based amperometric hydrogen peroxide sensors for biosensing application'. Mat Sci Eng C-Bio S, 2004. 24 (4): p. 513. 46. A.V. Borisova, E.E. Karyakina, S. Cosnier, and A.A. Karyakin, 'Current-Free Deposition of Prussian Blue with Organic Polymers: Towards Improved Stability and Mass Production of the Advanced Hydrogen Peroxide Transducer'. Electroanalysis, 2009. 21 (3-5): p. 409. 47. F. Ricci, A. Amine, C.S. Tuta, A.A. Ciucu, F. Lucarelli, G. Palleschi, and D. Moscone, 'Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability'. Anal. Chim. Acta., 2003. 485 (1): p. 111. 48. K.G. Marinova, R.G. Alargova, N.D. Denkov, O.D. Velev, D.N. Petsev, I.B. Ivanov, and R.P. Borwankar, 'Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions'. Langmuir, 1996. 12 (8): p. 2045. 49. V. Tandon and B.J. Kirby, 'zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure'. Electrophoresis, 2008. 29 (5): p. 1102. 50. M. Elimelech, W.H. Chen, and J.J. Waypa, 'Measuring the Zeta (Electrokinetic) Potential of Reverse-Osmosis Membranes by a Streaming Potential Analyzer'. Desalination, 1994. 95 (3): p. 269. 51. M. Elimelech, X.H. Zhu, A.E. Childress, and S.K. Hong, 'Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes'. J Membrane Sci, 1997. 127 (1): p. 101. 52. S.B. Mccray, V.L. Vilker, and K. Nobe, 'Reverse-Osmosis Cellulose-Acetate Membranes .1. Rate of Hydrolysis'. J Membrane Sci, 1991. 59 (3): p. 305. 53. K.D. Vos, F.O. Burris, and R.L. Riley, 'Kinetic Study of Hydrolysis of Cellulose Acetate in Ph Range of 2-10'. J Appl Polym Sci, 1966. 10 (5): p. 825. 54. M.A. Chaudry and P. Meares, 'An Electrical Study of Ion-Transport in Cellulose-Acetate'. Abstr. Pap. Am. Chem. S., 1980. 180 (Aug): p. 22. 55. M. Freund and G. Mozes, Paraffin products : properties, technologies, applications1982, Amsterdam: Elsevier. p. 121. 56. Permissible Exposure Limits. Available from: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9993. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65499 | - |
| dc.description.abstract | 本研究藉由噴墨技術來沈積普魯士藍於碳膠電極表面,由於普魯士藍層會受到溶液中氫氧根離子破壞,因而侷限了以普魯士藍製成之過氧化氫感測器的應用,為了提高普魯士藍穩定度而得到穩定度高且感測能力佳的過氧化氫感測器,以將其與氧化酶結合應用於微電極系統並製作成複合感測器,本研究先利用不同沈積方法於碳膠電極上沈積不同量之保護物質瞭解保護物質的保護機制,從此結果來得到噴墨墨水的配製概念,以便在未來能利用於噴墨製程上且更加簡單地製作出穩定度高且感測能力佳的過氧化氫感測器。
藉由噴墨技術來沈積醋酸纖維素和蠟等保護性物質於普魯士藍修飾電極表面,以瞭解對提升普魯士藍在中性到弱鹼性環境中的穩定性,操作環境為pH 7.4時,於普魯士藍修飾電極上噴塗石蠟10次並加熱之後,第20圈的還原峰電流值沒有明顯的下降,而其對過氧化氫感測的線性範圍在2.65–8.46 mM,靈敏度為0.826 mA/M/cm2,而過氧化氫最小偵測濃度為0.62 mM;而在普魯士藍修飾電極上醋酸纖維素噴塗5次之後,同樣的操作環境下,第20圈的還原峰電流值下降了4.4 %,對過氧化氫感測的線性範圍在0.15–2.61 mM,靈敏度為2.56 mA/M/cm2,而過氧化氫濃度感測極限為0.1 mM。 在本研究中發現保護性物質要有效的提升普魯士藍穩定性,須讓石蠟和醋酸纖維素完全包覆普魯士藍顆粒。在提高墨水中酸化碳黑的比例時,會讓電極的電容增加;提高蠟與醋酸纖維素的比例時,會增加質傳阻力。因此墨水中蠟或醋酸纖維素與普魯士藍的比例約為1: 1,就能得到不錯的穩定效果且不會有太大的質傳阻力,而普魯士藍與酸化碳黑的比例為1: 0.5到1: 1就能夠幫助提升普魯士藍的穩定性。 | zh_TW |
| dc.description.abstract | In this study, Prussian blue was deposited on carbon paste electrode by inkjet printing technique. But Prussian blue has very low stability with neutral and alkaline pH. Therefore, the result will confine the development of hydrogen peroxide sensors based on Prussian blue. In order to improve stability of Prussian blue for fabrication of hydrogen peroxide sensors that have high stability and well performance, and then the hydrogen peroxide sensors can apply in microelectrode system and combine with different oxidases to get a multicomponent-sensing device. Therefore, different amount of protective materials were deposited onto the Prussian blue modified electrode through inkjet process. Then, the electrodes were investigated to understand the protective mechanisms of protective materials. The preparation of inks applied for inkjet process will base on the mechanisms for fabricating hydrogen peroxide sensors that have high stability and well performance more simply.
Protective materials, such as cellulose acetate and paraffin wax, were deposited on Prussian modified electrode by inkjet printing technique. And the stability of Prussian blue operated at pH 7.4 was investigated. After 10 times paraffin wax deposition onto Prussian blue modified electrode and then heating process, the peak current of the twentieth cycle had no obvious decrease. And for hydrogen peroxide detection, the electrode had sensitivity of 0.826 mA/M/cm2, detection limit of 0.62 mM and linear range between 2.65 to 8.46 mM. And under the same operation condition, Prussian blue modified electrode with 5 times cellulose acetate deposition had sensitivity of 2.56 mA/M/cm2, detection limit of 0.1 mM and linear range between 0.15 to 2.61 mM. The peak current of the twentieth cycle had declined by 4.4 percent. It was found that the stability of Prussian blue particles, which were entirely coated with paraffin wax or cellulose acetate, had enhanced sufficiently. When the ratio of oxidized carbon black in the deposited layer increased, the capacitance of the electrode had also increased. When the proportion of wax or cellulose acetate in the deposited layer increased, the mass transfer resistance of ions through the layer had also increased. The results show the optimum ratio of Prussian blue to protective materials is 1 to 1, and the ratio of oxidized carbon black to Prussian blue is better in 0.5: 1 to 1: 1 | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:46:46Z (GMT). No. of bitstreams: 1 ntu-101-R99524060-1.pdf: 39379034 bytes, checksum: f4a655f99e371f863cc009dff5ecdaa9 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書............................................ I
誌謝.................................................... II 摘要.................................................... III 英文摘要................................................. IV 目錄.................................................... VI 圖目錄................................................... VIII 表目錄................................................... XIII 第 1 章 緒論............................................ 1 1. 1 過氧化氫簡介...................................... 1 1. 2 普魯士藍概述...................................... 2 1. 2. 1 普魯士藍簡介.............................. 2 1. 2. 2 普魯士藍穩定度之研究簡介.................... 4 1. 3 電化學簡介....................................... 8 1. 3. 1 電極界面- 電雙層現象....................... 8 1. 3. 2 循環伏安法............................... 11 1. 3. 3 計時安培法............................... 15 1. 4 研究動機與目的.................................... 17 1. 5 論文架構......................................... 18 第 2 章 實驗流程......................................... 19 2. 1 實驗藥品......................................... 19 2. 2 實驗儀器......................................... 20 2. 3 噴墨墨水製備...................................... 21 2. 3. 1 普魯士藍墨水製備.......................... 21 2. 3. 2 酸化碳黑墨水製備.......................... 21 2. 3. 3 醋酸纖維素墨水製備......................... 21 2. 3. 4 蠟墨水製備............................... 22 2. 4 工作電極製備...................................... 23 2. 4. 1 網版製作................................. 23 2. 4. 2 網印碳膠電極.............................. 23 2. 4. 3 沈積普魯士藍層............................ 24 2. 4. 4 沈積普魯士藍- 碳黑層....................... 24 2. 4. 5 沈積保護物質層............................ 25 2. 4. 6 噴墨技術基本介紹.......................... 25 2. 5 電極電化學表現檢測................................. 31 2. 5. 1 磷酸緩衝溶液.............................. 31 2. 5. 2 過氧化氫溶液.............................. 31 2. 5. 3 電化學分析............................... 32 第 3 章 噴墨沈積之普魯士藍穩定度探討......................... 33 3. 1 感測器結構介紹.................................... 33 3. 2 pH值對噴墨製程沈積之普魯士藍層穩定度影響探討........... 36 3. 3 不同物質對於普魯士藍穩定度之提升..................... 42 3. 3. 1 研究石蠟與酸化碳黑對於普魯士藍穩定度之提升..... 43 3. 3. 2 研究醋酸纖維素與酸化碳黑對於普魯士藍穩定度之提升 51 第 4 章 噴墨技術應用於普魯士藍穩定度之提升.................... 59 4. 1 保護物質墨水調配.................................. 59 4. 2 噴墨液滴形成現象.................................. 63 4. 3 噴墨製程沈積之醋酸纖維素膜對普魯士藍穩定度的影響........ 66 4. 4 噴墨製程沈積之石蠟膜對普魯士藍穩定度的影響............. 79 第 5 章 結論............................................ 90 第 6 章 未來展望......................................... 92 參考文獻................................................. 93 | |
| dc.language.iso | zh-TW | |
| dc.subject | 噴墨製程 | zh_TW |
| dc.subject | 感測器 | zh_TW |
| dc.subject | 穩定性提升 | zh_TW |
| dc.subject | 普魯士藍 | zh_TW |
| dc.subject | 過氧化氫 | zh_TW |
| dc.subject | Inkjet process | en |
| dc.subject | Sensors | en |
| dc.subject | Stability improvement | en |
| dc.subject | Prussian blue | en |
| dc.subject | Hydrogen peroxide | en |
| dc.title | 噴墨印刷製成普魯士藍過氧化氫感測器之操作穩定性提升 | zh_TW |
| dc.title | Operational Stability Enhancement of a Hydrogen Peroxide Sensor Based on Prussian Blue Fabricated through Inkjet Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳林祈(Lin-Chi Chen),吳嘉文(Chia-Wen Wu) | |
| dc.subject.keyword | 噴墨製程,感測器,穩定性提升,普魯士藍,過氧化氫, | zh_TW |
| dc.subject.keyword | Inkjet process,Sensors,Stability improvement,Prussian blue,Hydrogen peroxide, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 38.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
