Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖英志(Ying-Chih Liao)
dc.contributor.authorYun-Ting Maen
dc.contributor.author馬韻婷zh_TW
dc.date.accessioned2021-06-16T23:46:38Z-
dc.date.available2015-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation1. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 1997. 28(1): p. 5-24.
2. Lin, C.-C., C.C. Co, and C.-C. Ho, Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials, 2005. 26(17): p. 3655-3662.
3. Yuan, J., J. Shen, and I.K. Kang, Fabrication of protein-doped PLA composite nanofibrous scaffolds for tissue engineering. Polymer International, 2008. 57(10): p. 1188-1193.
4. Drury, J.L. and D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003. 24(24): p. 4337-4351.
5. Dike, L., et al., Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cellular & Developmental Biology - Animal, 1999. 35(8): p. 441-448.
6. Whitesides, G.M., et al., Patterning proteins and cells using soft lithography. Biomaterials, 1999. 20(23-24): p. 2363-2376.
7. Sanjana, N.E. and S.B. Fuller, A fast flexible ink-jet printing method for patterning dissociated neurons in culture. Journal of Neuroscience Methods, 2004. 136(2): p. 151-163.
8. Boland, T., et al., Inkjet printing for high-throughput cell patterning. Biomaterials, 2004. 25(17): p. 3707-3715.
9. Cho, Y.W., et al., Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates. Polymer, 2010. 51(10): p. 2147-2154.
10. Huang, R.Y.M., R. Pal, and G.Y. Moon, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. Journal of Membrane Science, 1999. 160(1): p. 101-113.
11. Roger, S., D. Talbot, and A. Bee, Preparation and effect of Ca2+ on water solubility, particle release and swelling properties of magnetic alginate films. Journal of Magnetism and Magnetic Materials, 2006. 305(1): p. 221-227.
12. Simpson, N.E., et al., The role of the CaCl2–guluronic acid interaction on alginate encapsulated βTC3 cells. Biomaterials, 2004. 25(13): p. 2603-2610.
13. Dong, Z.F., Q. Wang, and Y.M. Du, Alginate/gelatin blend films and their properties for drug controlled release. Journal of Membrane Science, 2006. 280(1-2): p. 37-44.
14. Fundueanu, G., et al., Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 1999. 20(15): p. 1427-35.
15. Hjorth, T.H. and K. Jan, Alginate in drug delivery systems. Drug development and industrial pharmacy, 2002. 28(6): p. 621-630.
16. Hyon, S.-H., K. Jamshidi, and Y. Ikada, Synthesis of polylactides with different molecular weights. Biomaterials, 1997. 18(22): p. 1503-1508.
17. Shi, S., et al., Preparation and characterization of microporous poly(D,L-lactic acid) film for tissue engineering scaffold. Int J Nanomedicine, 2010. 5: p. 1049-55.
18. Gui-Bo, Y., et al., Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. Journal of Biomedical Materials Research Part A, 2010. 93(1): p. 158-63.
19. Chemicals, P. F. (1982) Microcarrier cell culture: principles and methods.
20. Lo, C.-M., et al., Cell Movement Is Guided by the Rigidity of the Substrate. Biophysical Journal, 2000. 79(1): p. 144-152.
21. Wang, H.B., et al., Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(20): p. 11295-11300.
22. Janmey, P.A., et al., Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 2005. 60(1): p. 24-34.
23. Ranella, A., et al., Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomaterialia, 2010. 6(7): p. 2711-2720.
24. 林志成,林世明,李世元, 奈米量測技術-原子力顯微鏡在生物分子上之應用,2009,p83-91.
25. Sneddon, I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965. 3(1): p. 47-57.
26. P. Kennedy, “Flow Analysis Reference Manual”, Moldflow Pty. Ltd., Australia, 1993.
27. Dohnal, J. and F. Stepanek, Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technology, 2010. 200(3): p. 254-259.
28. Mi, Y.L., et al., Micromolding of PDMS scaffolds and microwells for tissue culture and cell patterning: A new method of microfabrication by the self-assembled micropatterns of diblock copolymer micelles. Polymer, 2006. 47(14): p. 5124-5130.
29. Huang, M.-H. and M.-C. Yang, Swelling and biocompatibility of sodium alginate/poly(γ-glutamic acid) hydrogels. Polymers for Advanced Technologies, 2010. 21(8): p. 561-567.
30. Lin, W.-C., D.-G. Yu, and M.-C. Yang, Blood compatibility of novel poly(γ-glutamic acid)/polyvinyl alcohol hydrogels. Colloids and Surfaces B: Biointerfaces, 2006. 47(1): p. 43-49.
31. Fan, L., et al., Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydrate Polymers, 2006. 65(4): p. 447-452.
32. Roy, A., J. Bajpai, and A.K. Bajpai, Development of calcium alginate -gelatin based microspheres for controlled release of endosulfan as a model pesticide. Indian Journal of Chemical Technology, 2009. 16(5): p. 388-395.
33. Pelham, R.J. and Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(25): p. 13661-13665.
34. Wang, H.-B., M. Dembo, and Y.-L. Wang, Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. American Journal of Physiology - Cell Physiology, 2000. 279(5): p. C1345-C1350.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65497-
dc.description.abstract在本研究過程中,為了達到兼具控制性及選擇性的細胞培養,我們提出了一個簡單且可靠的方法,即為使用噴墨技術製成所需之圖樣,再利用細胞本身所喜好生長環境因素的不同,以準確地控制細胞附著於生物可分解(biodegradable)材料上方。噴墨技術不僅可使材料成本降低,亦可以簡單地製作各式各樣不同的微圖形。
首先,藉由海藻酸鈉和氯化鈣產生交聯,並使用鑄造/溶劑蒸發法(casting / solvent evaporation method)製作出乾的方形基底薄膜,再利用控制液滴(drop-on-demand)的方法,在噴塗速度以及基板加熱溫度分別設定為20mm/s及30℃的情況下,可以在海藻酸鈣薄膜上噴塗各種不同的PLA圖案,例如線、圓形和方形等。本實驗中藉由噴塗不同的圖案提供細胞貼附,以證實可以控制3T3-L1細胞貼附在特定的位置。在實驗中細胞生長的概況分析,如細胞在基材上的貼附、貼附的數量以及細胞貼附的型態等,皆使用螢光顯微鏡與光學顯微鏡觀察。
在先前相關的研究中已經發現3T3細胞喜歡貼附在較硬的基材,故本實驗藉由噴墨技術噴塗一層到五層的PLA圖案,製作出因層數不同而具有硬度差異的PLA圖案,以探討硬度差異對3T3-L1細胞貼附的影響。硬度的計算是先利用AFM分析得到力與位移的曲線圖,再藉由Sneddon model做計算。當PLA層數越多,所得到的楊氏係數就越來越大,細胞貼附的量也就越多。最後,由實驗結果顯示,在細胞培養實驗中,因噴塗五層的PLA其硬度遠大於海藻酸鈣薄膜,可吸引較多的細胞貼附,所以本實驗可以利用基材硬度的不同,控制3T3-L1細胞貼附在特定的位置。
zh_TW
dc.description.abstractIn this research, we present an efficient and reliable approach to accurately control cell attachment positions on biodegradable substrates by inkjets printing technology. Sodium alginate cross-linked with calcium chloride is dried by casting /solvent evaporation method to prepare smooth square films. A drop-on-demand method is used to print various patterns of biodegradable material (PLA), such as circles, squares, and lines, which is a specific marker for 3T3-L1 cells. Cell growth profile, such as cell attachment, density and morphology, on various patterns are examined and studied by confocal fluorescence microscopy and optical microscopy. Smooth PLA pattern on calcium alginate film can be obtained when velocity of moving stage was set to 20
mm/s and the substrate temperature was kept at 30℃.
Previous studies showed that 3T3 cells prefer to attach to harder substrates. By this principle, to investigate effects of rigidity variation on cell attachment, multiple layers of PLA were printed on alginate to generate composite substrates with different PLA layer. The Young’s moduli of printed PLA layers on alginate are determined with AFM. Through AFM indentation, force–distance curves can be used to calculate Young’s moduli of composite films from Sneddon model. In the result, significantly more cells were attached to PLA with more printed PLA layers, or composite films with higher Young’s modulus. This rigidity-guided attachment approach can be used to create
cell culture on various patterns.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:46:38Z (GMT). No. of bitstreams: 1
ntu-101-R99524041-1.pdf: 6996929 bytes, checksum: 1428bc98124b91b39188ee40e2f037cb (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要…………………………………………………………………………… I
英文摘要……………………………………………………………………… II
誌謝…………………………………………………………………………………… III
目錄…………………………………………………………………………………… IV
圖目錄………………………………………………………………………………… VI
表目錄………………………………………………………………………………... X
第一章 緒論………………………………………………………………………. 1
1.1 前言………………………………………………………………………. 1
1.2 文獻回顧…………………………………………………………………… 2
1.2.1 生醫材料…………………………………………………………… 2
1.2.2 貼附型細胞貼附機制……………………………………………… 6
1.2.3 使用噴墨技術製備微圖案控制細胞貼附………………………… 7
1.2.4 基材硬度與表面粗糙度對細胞的影響…………………………… 13
1.3 論文架構…………………………………………………………………… 18
第二章 噴墨系統介紹……………………………………………………………… 21
A. 噴墨模組……………………………………………………………… 21
B. 觀測設備和移動平台………………………………………………… 22
C. 軟體操作 ……………………………………………………………… 22
第三章 實驗物品與流程…………………………………………………………… 27
3.1 實驗藥品與儀器………………………………………………………… 27
3.1.1實驗藥品…………………………………………………………… 27
3.1.2實驗儀器…………………………………………………………… 28
3.2 實驗流程…………………………………………………………………… 29
3.2.1海藻酸鈣 (calcium alginate)薄膜之製作………………………...… 29
3.2.2 PLA墨水配製…………………………………..……………….…… 31
3.2.3 MicroFab jetlab 4操作……….……………………………………… 32
3.2.4 細胞培養及染色………………………………………..…………… 34
A. 細胞培養……………………………………………………… 34
B. 細胞染色……………………………………………………… 36
3.3分析儀器…………………………………………………………………… 38
3.3.1原子力顯微鏡(Atomic Force Microscopy, AFM)……………… 38
3.3.2掃描式電子顯微鏡(Scanning Electron Microscope, SEM)…… 42
3.3.3水樣分析儀………………………………………………………… 43
第四章 利用噴墨技術噴塗聚乳酸(PLA)墨水………………….………………… 45
4.1 噴墨液滴生成與控制……………………………...……………………… 45
4.2 墨水的配方對於PLA在基材表面成膜性的影響………………………… 50
4.3 不同噴塗情況下對於圖案(Pattern)呈現的影響…………………………… 52
4.4 利用噴墨技術控制聚乳酸(PLA)墨水於基材上之形成…………………… 56
4.5 使用噴墨技術控制微圖案在海藻酸鈣薄膜上方之形成………..………… 60
第五章 PLA的固定與PLA的層數對細胞貼附之影響…...……………………… 63
5.1海藻酸鈣薄膜的膨潤率與含水率分析…………………………………... 63
5.2 PLA固定於海藻酸鈣薄膜之研究………………………………………… 66
5.3 PLA軟硬度對細胞貼附的影響…………………………………………… 69
5.4 PLA表面粗糙度對細胞貼附的影響……………………………………… 76
5.5控制細胞貼附於特定的位置……………………………………………… 81
第六章 結論………………………………………………………………………… 89
第七章 未來展望…………………………………………………………………… 91
參考文獻……………………………………………………………………………… 93
作者簡述……………………………………………………………………………… 97
dc.language.isozh-TW
dc.subject海藻酸鈉zh_TW
dc.subject3T3-L1細胞zh_TW
dc.subject噴墨技術zh_TW
dc.subject生物可分解材料zh_TW
dc.subject聚乳酸zh_TW
dc.subjectBiodegradable materialen
dc.subjectSodium alginateen
dc.subject3T3-L1 cellsen
dc.subjectInkjets printing technologyen
dc.subjectpoly lactic acid (PLA)en
dc.title利用噴墨技術將生物可分解之材料製成圖形來控制細胞培養zh_TW
dc.titlePatterning Cell Cultures on Biodegradable Substrates by Inkjet Technologyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐振哲(Cheng-Che Hsu),游佳欣(Jiashing Yu),蕭浩明,盧彥文
dc.subject.keyword噴墨技術,海藻酸鈉,聚乳酸,生物可分解材料,3T3-L1細胞,zh_TW
dc.subject.keywordInkjets printing technology,Sodium alginate,poly lactic acid (PLA),Biodegradable material,3T3-L1 cells,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved