請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于昌平(Chang-Ping Yu) | |
| dc.contributor.author | Sheng-Hui Wang | en |
| dc.contributor.author | 王勝輝 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:46:25Z | - |
| dc.date.available | 2025-02-24 | |
| dc.date.copyright | 2020-02-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-18 | |
| dc.identifier.citation | Attaway, H.H., Schmidt, M.G., (2002). Tandem biodegradation of BTEX components by two Pseudomonas sp. Current Microbiology, 45, 30–36.
Bao-Ping Xin, Chih-Hung Wu, Cheng-Han Wu, Chi-Wen Lin (2013). Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. Journal of Hazardous Materials, 244– 245, 765– 772. Botton, S., Harmelen, M.V., Braster, M., Parsons, J.R., Ro¨ ling, W.F.M., (2007). Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer. FEMS Microbiology Ecology, 62, 118–130. Brett R. Baldwin, Cindy H. Nakatsu, Jennifer Nebe, Gene S. Wickham,Christopher Parks, Loring Nies (2009). Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. Journal of Hazardous Materials, 163, 524–530. Chungheon Shin, Eunyoung Lee, Perry L. McCarty, Jaeho Bae (2011). Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater. Bioresource Technology, 102, 9860–9865. Chi-Wen Lin, Chih-Hung Wu, Chen-Ting Tang, Shih-Hsien Chang (2012). Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresource Technology, 124, 45–51. Chi-Hui Yeh, Chi-Wen Lin, Chih-Hung Wu (2010). A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. Journal of Hazardous Materials, 178, 74–80. Chia-Shen Yeh, Reuben Wang, Wen-Chi Chang, Yang-hsin Shih (2018). Synthesis and characterization of stabilized oxygen-releasing CaO2 nanoparticles for bioremediation. Journal of Environmental Management, 212, 17-22. Ciro Fernando Bustillo-Lecompte, Durkhani Kakar b, Mehrab Mehrvar (2018). Photochemical treatment of benzene, toluene, ethylbenzene, and xylenes (BTEX) in aqueous solutions using advanced oxidation processes: Towards a cleaner production in the petroleum refining and petrochemical industries. Journal of Cleaner Production, 186, 609-617. Colin S. Chen, Chien-Jun Tien, Kai-Van Zhan (2014). Evaluation of Intrinsic Bioremediation of Methyl Tert-butyl Ether (MTBE) Contaminated Groundwater. J. Soil Groundw. Environ, 19, 9~17. Collins, L.D., Daugulis, A.J., (1999). Benzene/toluene/p-xylene degradation. Part I. Solvent selection and toluene degradation in a two-phase partitioning bioreactor. Appl. Microbiology Biotechnology, 52, 354–359. David O'Connor, Deyi Hou, Yong Sik Ok, Yinan Song, Ajit K. Sarmah, Xuanru Li, Filip M.G. Tack (2018). Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of Controlled Release, 283, 200–213. Deeb, R.A., Alvarez-Cohen, L., (1999). Temperature effects and substrate interactions during the aerobic biotransformation of BTEX mixtures by toluene-enriched consortia and Rhodococcus rhodochrous. Biotechnology Bioengineering, 62, 526–536. Deeb, R.A., Hu, H.Y., Hanson, J.R., Scow, K.M., Alvarez-Cohen, L., (2001). Substrate interactions in BTEX and MTBE mixtures by an MTBE-degrading isolate. Environmental Science & Technology, 35, 312–317. Ehsan Rasa, Barbara A. Bekins, Douglas M. Mackay, Nicholas R. de Sieyes, John T. Wilson, Kevin P. Feris, Isaac A. Wood, and Kate M. Scow (2013). Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations.Water Resources Research, 49, 4907–4926. Enza Palma, Anna Espinoza Tofalos, Matteo Daghio, Andrea Franzetti, Panagiota Tsiota, Carolina Cruz Viggi, Marco Petrangeli Papini, Federico Aulenta (2019). New BIOTECHNOLOGY, 53, 41–48. Fatemeh Gholami, Mahmoud Shavandi, Seyed Mohammad Mehdi Dastgheib, Mohammad Ali Amoozegar (2018). Naphthalene remediation from groundwater by calcium peroxide (CaO2) nanoparticles in permeable reactive barrier (PRB). Chemosphere, 212, 105-113. Felix Garcia-Ochoa, Emilio Gomez, Victoria E. Santos, Jose C. Merchuk (2010). Oxygen uptake rate in microbial processes: An overview. Biochemical Engineering Journal, 49, 289–307. Goi, A., M. Viisimaa, M. Trapido, and R. Munter, (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides, Chemosphere, 82, 1196-1201. Gregory Poi, Esmaeil Shahsavari, Arturo Aburto-Medina, Puah Chum Mok,Andrew S. Ball (2018). Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation. Journal of Environmental Management, 214, 157-163. Hamid Mosmeri a , Ebrahim Alaie b, Mahmoud Shavandi a , Seyed Mohamad Mehdi Dastgheib c , Saeideh Tasharrofia (2017). Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate. Journal of the Taiwan Institute of Chemical Engineers, 78, 299–306. Hamid Mosmeri, Fatemeh Gholami, Mahmoud Shavandi,Seyed Mohammad Mehdi Dastgheib, Ebrahim Alaie (2019) Bioremediation of benzene-contaminated groundwater by calcium peroxide(CaO2) nanoparticles: Continuous-flow and biodiversity studies. Journal of Hazardous Materials, 37, 183-190. H.Y. Chiu, F. Verpoort, J.K. Liu, Y.M. Chang, C.M. Kao (2017). Using intrinsic bioremediation for petroleum–hydrocarbon contaminated groundwater cleanup and migration containment: Effectiveness and mechanism evaluation. Journal of the Taiwan Institute of Chemical Engineers, 72, 53–61. In-situ remediation of benzene contaminated groundwater- a bench scale study (2013.6). KTH Land and Water Resources Engineering. James E. Landmeyer, Paul M. Bradley (2003). Effect of Hydrologic and Geochemical Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer. Bioremediation Journal, 7, 165–177. James A. Saunders∗, Ming-Kuo Lee, Prakash Dhakal1, Shahrzad Saffari Ghandehari, Ted Wilson,M. Zeki Billor, Ashraf Uddin (2018). Bioremediation of arsenic-contaminated groundwater by sequestration ofarsenic in biogenic pyrite. Applied Geochemistry, 96, 233–243. Juliana B. Müllera, Débora T. Ramos, Catherine Larose, Marilda Fernandes,Helen S.C. Lazzarin, Timothy M. Vogel, Henry X. Corseuil (2017). Combined iron and sulfate reduction biostimulation as a novelapproach to enhance BTEX and PAH source-zone biodegradation inbiodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 326, 229–236. J.H. Langwaldt, J.A. Puhakka (2000). On-site biological remediation of contaminated groundwater: a review. Environmental Pollution, 107, 187-197. Jung, I.G., Park, C.H., (2004). Characteristics of Rhodococcus pyridinovorans PYJ-1 for the Biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. Journal of Bioscience and Bioengineering, 97, 429–431. Kamal Khodaei, Hamid Reza Nassery, Mahnaz Mazaheri Asadi, Hossein Mohammadzadeh, Mojtaba G. Mahmoodlu (2017). BTEX biodegradation in contaminated groundwater using a novel strain (Pseudomonas sp. BTEX-30). International Biodeterioration & Biodegradation, 116, 234-242. K.D. Greer, J.W. Molson, J.F. Barker, N.R. Thomson, C.R. Donaldson (2010). High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer. Journal of Contaminant Hydrology, 118, 13–26. Kim, D., Kim, Y.S., Kim, S.-K., Kim, S.W., Zylstra, G.J., Kim, Y.M., Kim, E., (2002). Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Applied Environmental Microbiology, 68, 3270–3278. Kim, S.B., Park, C.H., Kim, D.J., Jury, W.A., (2003). Kinetics of benzene biodegradation by Pseudomonas aeruginosa: parameter estimation. Environmental Toxicology and Chemistry, 22, 1038–1045. Leahy, J.G., Tracy, K.D., Eley, M.H., (2003). Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbondegrading bacteria. FEMS Microbiology Ecology, 43, 271–276. Liang Chena, Yulong Liu, Fei Liu, Song Jind (2014). Treatment of co-mingled benzene, toluene and TCE in groundwater. Journal of Hazardous Materials, 275, 116–120. Mehrdad Farhadian, Ce´dric Vachelard, David Duchez, Christian Larroche (2008). In situ bioremediation of monoaromatic pollutants in groundwater:A review. Bioresource Technology, 99, 5296–5308. Morasch, B., Richnow, H.H., Schink, B., Vieth, A., Meckenstock, R.U., (2002). Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons. Applied Environmental Microbiology, 68, 5191–5194. Muftah H. El-Naas , Janice A. Acio, Ayat E. El Telib (2014). Aerobic biodegradation of BTEX: Progresses and Prospects. Journal of Environmental Chemical Engineering, 2, 1104–1122. Nielsen, D.R., McLellan, P.J., Daugulis, A.J., (2006). Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber. Biotechnology Letters, 28, 1293–1298. Prenafeta-Boldu´ , F.X., Ballerstedt, H., Gerritse, J., Grotenhuis, J.T.C., (2004). Bioremediation of BTEX hydrocarbons: effect of soil inoculation with the toluene-growing fungus Cladophialophora sp. strain T1. Biodegradation, 15, 59–65. Prenafeta- Boldu´ , F.X., Vervoort, J., Grotenhuis, J.T., Van Groenestijn, J.W., (2002). Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Applied Environmental Microbiology, 68, 2660–2665. Parales, R.E., Ditty, J.L., Harwood, C.S., (2000). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Applied Environmental Microbiology, 66, 4098–4104. Paulo R. Frade, Luiza Notini, Sara V. Santos, Regina F.P.M. Moreira, Mônica M.D. Leão,Camila C. Amorim (2018). Feasibility study of the use of basic oxygen furnace sludge in a permeable reactive barrier. Journal of Hazardous Materials, 351, 188–195. Robert C. Borden, Robert A. Daniel, Louis E. LeBrun IV, Charles W. Davis (1997). Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer. Water Resources Research, 33, 1105-1115. Roberto C. Pepino Minetti, Héctor R. Maca˜no, Javier Britch, M. Carla Allende (2017). In situ chemical oxidation of BTEX and MTBE by ferrate: pHdependence and stability. Journal of Hazardous Materials, 324, 448–456. Selina M Bamforth, Ian Singleton (2005). Review bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol, 80, 723–736. She-Jiang Liu, Zhi-Yuan Zhao, Jie Li, Juan Wang, Yun Qi (2014). An anaerobic two-layer permeable reactive biobarrier for the remediation of nitratecontaminated groundwater. water research, 47, 5977-5985. Shuguang Lu, Xiang Zhang, Yunfei Xue (2017). Application of calcium peroxide in water and soil treatment: A review. Journal of Hazardous Materials, 337, 163–177. Siegrist R. L., Crimi M., Simpkin T. J. (2011). In Situ Chemical Oxidation for Groundwater Remediation. SERDP ESTCP Environmental Remediation Technology, ISBN 978-1-4419-7826-4. Shim, H., Hwang, B., Lee, S.S., Kong, S.H., (2005). Kinetics of BTEX biodegradation by a coculture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation, 16, 319–327. Shim, H., Yang, S.T., (1999). Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor. J. Biotechnology, 67, 99–112. Treatment Technologies for Site Cleanup:Annual Status Report(Twelfth Edition),USEPA, EPA-542-R-07-012,2007。 Van Hamme, J.D., Singh, A., Ward, O.P., (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549. White,D., Schmidtke, T., Woolard, C (1999). Laboratory model of petroleum barrier in Arctic Alaska, Hazardous Materials, B 67, p.313~323. Yanbo Zhou, Xingbin Fang, Zhiqing Zhang, Yonghua Hu, Jun Lu (2017). An oxygen slow-releasing material and its application in water remediation as oxygen supplier. Environmental Technology. Yunfei Xue, Shuguang Lu, Xiaori Fu, Virender K. Sharma, Itza Mendoza-Sanchez, Zhaofu Qiu, Qian Sui (2018). Simultaneous removal of benzene, toluene, ethylbenzene and xylene (BTEX) by CaO2 based Fenton system: Enhanced degradation by chelating agents. Chemical Engineering Journal, 331, 255–264. 馬志強 (2005). 應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率. 國立成功大學環境工程學系碩士論文, 1-130。 羅文杰 (2005). 柴油在土壤中之生物降解探討及其在油污染源鑑定之應用. 國立聯合大學環境與安全衛生工程學系碩士論文, 1-122。 郭彥汝 (2007). Ralstonia sp. P-10 以甲苯為主要基質好氧共代謝降解三氯乙烯之研究. 國立交通大學環境工程研究所碩士論文, 1-85。 賈塔 (2015). 過硫酸鹽化學氧化再生吸附甲苯之活性碳管柱試驗. 國立中興大學環境工程學系碩士論文, 1-62。 邱婉婷 (2011.6). 以不同氧化劑結合生物復育法處理受柴油污染土壤之研究. 國立暨南國際大學土木工程學系碩士論文, 1-141。 行政院環境保護署 (95.9):油品類儲槽系統土壤及地下水污染整治技術選取、系統設計要點與注意事項參考手冊。 行政院環境保護署 (100.1):土壤污染監測標準。 行政院環境保護署 (100.1):土壤污染管制標準。 行政院環境保護署 (102.12):地下水污染管制標準。 行政院環境保護署 (102.12):地下水污染監測標準。 行政院環境保護署 (103):全國土壤及地下水污染整治策略旗艦領航計畫。 行政院環境保護署 (104.8):土壤及地下水油品類污染整治作業參考指引。 謝宗霖 (2009). 以兩階段生物整治策略處理受石油碳氫化合物污染土壤復育之研究. 國立成功大學環境工程學系碩士論文, 1-180。 卓坤慶 (2002). 應用慢釋氧物質處理受石油碳氫化合物污染之地下水-現地模場試驗. 國立台灣大學環境工程學研究所。 陳立軒 (2007). 透水性反應牆之生物分解能力與菌群分佈研究. 大葉大學環境工程學系碩士班碩士論文, 1-135。 陳世豪 (2010). 複合鐵A在土壤管柱中催化Fenton-like反應去除NAPL相甲苯能力之評估. 國立屏東科技大學環境工程與科學系碩士論文。 陳俊源 (2004). 砂管柱連續流甲苯共代謝三氯乙烯之研究. 國立成功大學環境工程學系碩士論文, 1-115。 陳郁淳 (2007). 研究兩階段程序處理高濃度氯酚及多環芳香烴污染土壤. 國立高雄第一科技大學環境與安全衛生工程系, 1-121。 陳谷汎 (2001). 以生物復育法整治2,4-二氯酚污染之地下水. 國立中山大學環境工程研究所碩士論文, 1-121。 陳谷汎 (2005). 地下水MTBE生物可分解性之研究. 國立中山大學環境工程研究所博士論文, 1-146。 曾元玨 (2005). 汽油中甲基第三丁基醚及芳香族化合物於有機相/水相分佈行為研究. 國立高雄師範大學生物科學研究所碩士論文。 翁義雄 (2005). TX-100 加強亞鐵離子催化過硫酸鈉氧化地下水中三氯乙烯之相關批次和砂箱研究. 國立屏東科技大學環境工程與科學系碩士論文。 王智緯 (2012). 好氧降解對地下水中BTEX污染團之影響. 國立交通大學環境工程研究所碩士論文, 1-145。 吳承翰 (2011). 新穎釋氧型固定化菌體顆粒復育受BTEX污染之地下水研究. 國立雲林科技大學環境與安全衛生工程系碩士班, 1-122。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65493 | - |
| dc.description.abstract | 本研究主要探討應用於土壤及地下水生物復育之釋氧化合物,如:EOx™與PermeOx®Plus,藉由批次試驗與連續試驗方式模擬現地改善模式與操作條件,並觀察基本水質變化與評估其應用條件。
在批次試驗中所使用之去氧水,係參考文獻中提及之兩種去氧方式,如氮氣曝氣與Na2SO3去氧,以氮氣曝氣方式可於短時間內去除水中溶氧量,且對於基本質影響較小,故做為後續試驗之基底用水。本試驗另透過短時間尺度與長時間尺度觀察釋氧化合物溶水後其水質變化,依實驗結果得知,PermeOx®Plus溶解效率較佳,可於短時間內提高水中溶氧量,溶氧量約可至14 mg/L,而EOx™之溶氧量約至12 mg/L,藉由透過文獻得知,釋氧化合物可因添加不同種類與濃度之緩衝物質,除可緩衝CaO2造成pH濃度上升外,加速CaO2釋氧反應,提高或延長釋氧化合物之供氧效果,因此,推估PermeOx®Plus可能添加類似物質;另外,藉由過濾方式去除釋氧化合物粉末(基質),發現水中溶氧已無持續提升,推估釋氧化合物成分中所含CaO2經水解後釋放Ca(OH)2和H2O2,其中H2O2具有提高水中溶氧之效果;最後,透過採取兩處污染場址之背景土壤與釋氧化合物過濾後取得之含氧水反應,以及選用曝氣後取得之含氧水做為對照組,依實驗結果,土壤氧氣消耗率約0.0079~0.20 mgO2/day/g-soil,而釋氧化合物產生之含氧水與曝氣後之含氧水對於本階段試驗土壤氧氣消耗率差異不大。 在管柱試驗中,因考量釋氧化合物可應用於不同污染改善工法,以及可能受不同場址背景條件影響,故藉由本試驗改變不同填充型態操作方式與調整管柱流速,評估釋氧化合物實地應用。本試驗以3種不同填充型態進行比較,發現散狀填充方式具有較佳供氧效果,其次是餅狀填充及球狀填充,由上述結果,推測釋氧化合物與水之有效接觸面積可直接影響釋氧效果;另EOx™與PermeOx®Plus以散狀與餅狀填充方式進行比較,仍可發現散狀填充之供氧效果較佳,但對於EOx™與PermeOx®Plus之水中溶氧表現已無明顯差距,故推估2種釋氧化合物應用於離地改善工法(土耕法、排土客土法)時,釋氧效果差異不大。次試驗則於不同流速下進行釋氧化合物試驗,依實驗結果,DO濃度高低隨著流速提高而減少,推估可能為CaO2與水反應時間縮短,使釋氧效果逐漸降低;依EOx™試驗結果,管柱流速設定於4 ml/min及10 ml/min時,測得DO濃度差異不大,約5 mg/L,惟流速1 ml/min可測得DO濃度約6~7 mg/L;反之,PermeOx®Plus依流速遞減 (10 ml/min、4 ml/min、1 ml/min),DO濃度有增加現象,DO值平均最高濃度約8 mg/L,但隨著水力停留時間增加,PermeOx®Plus之釋氧量相對降低。綜合本研究結果, PermeOx®Plus在各試驗表現上,具有水解效果較佳且於初期釋氧效果快速,而EOx™可穩定提供水中溶氧且具有較長之釋氧效期。 | zh_TW |
| dc.description.abstract | The purposes of this research are to study biological remediation in soil and groundwater with oxygen-releasing compounds, such as EOx™ and PermeOx®Plus. The study is to simulate field models and operating conditions through batch test and continuous test, to observe basic water quality changes and evaluate its application conditions.
In the batch test, this test removes oxygen in water by nitrogen aeration and Na2SO3. Nitrogen aeration can remove dissolved oxygen in water for a short time and has no effect on basic quality changes, so it is used as the water supply source for the next test to use. Oxygen-releasing compounds are mixed with low-oxygen water to observe water quality changes through short time scales and long time scales. According to the results, after mixing for about 40 minutes, the dissolved oxygen content of PermeOx®Plus can reach about 14 mg/L, and the dissolved oxygen content of EOx ™ can reach about 12 mg/L. In the literature, CaO2 can be mixed with different kinds of buffer substances to accelerate oxygen release. Therefore, maybe the PermeOx®Plus was added the different buffer substance to make the oxygen release effect better. PermeOx®Plus can increase the dissolved oxygen in a short time, which has better dissolution efficiency. In addition, when using the 0.45 μm filter to remove the oxygen-releasing compound powder, the dissolved oxygen has not been continuously increased. Thus, the CaO2 in the oxygen-releasing compound powder was the main source of oxygen release. In addition, we took the background soils of two sites to mix with filtered oxygen-release compounds and saturated aerated water. It was found that the oxygen uptake rate was between 0.0079 to 0.20 mg O2/day/g-soil. In the column test, we change the filling types and flow rate with reference to the application of pollution remediation methods and background condition of different sites, to evaluate the field application of oxygen-releasing compounds. In the first test, we compared the three different filling types to evaluate oxygen release efficiency of oxygen-releasing compound, such as bulk filling, pie filling and spherical filling. In the experimental results, the bulk filling method has a better oxygen supply effect, followed by pie filling and spherical filling. From the above results, it is estimated that the effective contact area of the oxygen-releasing compound can directly affect the oxygen-releasing effect. In addition, when EOx ™ and PermeOx® Plus are compared in the form of bulk filling and pie filling, it can be sure the effect of bluk filling is better, but is not much different between EOx™ and PermeOx®Plus. Therefore, it is estimated that the oxygen release effect of EOx ™ and PermeOx®Plus will be similar as applied in land farming and excavation. Furthermore, oxygen-releasing compounds were tested at different flow rates. According to the experimental results, the oxygen release efficiency of the oxygen-releasing compounds is relatively reduced as the flow rate increases, likelydue to the reduced contact time between with CaO2 and water. According to the EOx ™ test results, when the column flow rate is set to 4 ml / min and 10 ml / min, the measured DO concentration is similar (5 mg/L), but the measured DO concentration is about 6 to 7 mg / L at the flow rate of 1 ml / min. Conversely, for the PermeOx®Plus, the DO concentration increases when the flow rate decreases. The average maximum DO value is about 8 mg/L. Therefore, PermeOx®Plus has a better oxygen release effect, while EOx™ has provided longer oxygen supply time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:46:25Z (GMT). No. of bitstreams: 1 ntu-109-P06541202-1.pdf: 7566721 bytes, checksum: 15a52895e83fdc23cdffa89ddbd8112f (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄
頁碼 口試委員會審定書………………………………………………………………………I 致謝………………………………………………………….….…...………………… ΙI中文摘要………………………………………………………….….…...……………ΙV 英文摘要………………………………………………………….….…...……………VI 目錄…………………………………………………………….…….…...………… VIII 圖目錄………………………………………………………………….....…………… X 表目錄…………………………………………………………………….…………. XII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 6 第二章 文獻回顧 7 2.1 油品污染物洩漏原因 7 2.2 土壤及地下水污染相關法規 11 2.3 污染場址判定流程 17 2.4 污染物特性說明 18 2.5 地下水污染整治工法介紹 23 2.6 微生物分解機制 32 2.7 好氧生物復育常見分解氧微生物 35 2.8生物復育關鍵影響因子 35 2.9 長效釋氧化合物反應機制與應用 38 2.10 應用長效釋氧化合物整治地下水之相關研究 41 第三章 材料與方法 44 3.1 研究流程 44 3.2 研究方法 46 3.2.1 第一階段批次試驗條件與方法 46 3.2.2 第二階段管柱試驗條件與方法 54 3.3 研究材料與設備 59 3.3.1. 實驗用藥品 59 3.3.2 實驗室儀器與設備 59 第四章 結果與討論 61 4.1 第一階段批次試驗 61 4.1.1 去氧水配製 61 4.1.2 釋氧化合物溶解效率分析 64 4.1.3 釋氧化合物基質特性分析 67 4.1.4 不同質地對釋氧化合物之氧氣消耗率分析 69 4.2 第二階段管柱試驗條件與方法 74 4.2.1 不同填充型態對釋氧效能之影響 74 4.2.2 不同釋氧化合物對釋氧效能之試驗 77 4.2.3 不同水力傳導係數(管柱流速)下之釋氧效能測試 79 第五章 結論與建議 83 5.1 結論 83 5.2 建議 84 參考文獻……….…………….………….…………….………….…………….……...83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 批次試驗 | zh_TW |
| dc.subject | 管柱試驗 | zh_TW |
| dc.subject | 釋氧化合物 | zh_TW |
| dc.subject | 釋氧率 | zh_TW |
| dc.subject | 氧氣消耗率 | zh_TW |
| dc.subject | Batch test | en |
| dc.subject | Column test | en |
| dc.subject | Oxygen release compound | en |
| dc.subject | Oxygen release rate | en |
| dc.subject | Oxygen uptake rate | en |
| dc.title | 不同長效釋氧化合物物化特性與實地應用之探討 | zh_TW |
| dc.title | A study of the physicochemical characteristics and field application with the different sustained oxygen-releasing compounds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林居慶(Chu-Ching Lin),許心蘭(Hsin-Lan Hsu) | |
| dc.subject.keyword | 批次試驗,管柱試驗,釋氧化合物,釋氧率,氧氣消耗率, | zh_TW |
| dc.subject.keyword | Batch test,Column test,Oxygen release compound,Oxygen release rate,Oxygen uptake rate, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202000247 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 7.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
