請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65465
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳哲夫(Jeffrey D. Ward) | |
dc.contributor.author | Shaw-Chun Chiang | en |
dc.contributor.author | 江紹群 | zh_TW |
dc.date.accessioned | 2021-06-16T23:44:44Z | - |
dc.date.available | 2015-08-10 | |
dc.date.copyright | 2012-08-10 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-24 | |
dc.identifier.citation | 1 Mullin JW, Nyvlt J. Programmed Cooling of Batch Crystallizers. Chemical Engineering Science. 1971; 26(3): 369–337.
2 Jones AG. Optimal Operation of a Batch Cooling Crystallizer. Chemical Engineering Science. 1974; 29(5): 1075–1087. 3 Miller SM, Rawlings JB. Model Identification and Control Strategies for Batch Cooling Crystallizers. AIChE Journal. 1994; 40(8): 1312–1327. 4 Chung SH, Ma DL, Braatz RD. Optimal Seeding in Batch Crystallization. Canadian Journal of Chemical Engineering. 1999; 77(3): 590−596. 5 Doki N, Sato A, Yokota M, Kubota, N. Product Crystal Size Distribution of Potassium Alum in Seeded Batch Cooling Crystallization under Different Cooling Modes. in Proceedings of the 14th International Symposium on Industrial Crystallization, September 12−16, 1999. 6 Doki N, Kubota, N, Yokota M, Chianese A. Determination of Critical Seed Loading Ratio for the Production of Uni-Modal Size Distribution in Batch Cooling Crystallization of Potassium Alum. Journal of Chemical Engineering of Japan. 2002; 35(7): 670−676. 7 Kubota N, Onosawa M. Seeded Batch Crystallization of Ammonium Aluminum Sulphate from Aqueous Solution. Journal of Crystal Growth. 2009; 311(20): 4525–4529. 8 Ward JD, Yu CC, Doherty MF. A New Framework and a Simpler Method for the Development of Batch Crystallization Recipes. AIChE Journal. 2010; 57(3): 606–617. 9 Mullin JW, Chakraborty M, Mehta K. Nucleation and Growth of Ammonium Sulphate Crystals from Aqueous Solution. Journal of Applied Chemistry. 1970; 20(12): 367–371. 10 Bourne JR, Faubel A. Influence of Agitation on the Nucleation of Ammonium Sulphate. In Industrial Crystallizaiton 81 (S. J. Jancic and E. J. de Jong, eds.), North Holland, Amsterdam. 1982; 79–86. 11 Tai CY, Lu EL, Yu KH. Determination of Secondary Nucleation Kinetics Using a Batch Crystallizer. Journal of the Chinese Institute of Chemical Engineers. 1991; 22(4): 231–240. 12 Hu Q, Rohani S, Wang DX, Jutan A. Optimal Control of a Batch Cooling Seeded Crystallizer. Powder Technology. 2005; 156(2-3): 170–176. 13 Hu Q, Rohani S, Wang DX, Jutan A. Nonlinear Kinetic Parameter Estimation for Batch Cooling Seeded Crystallization. AIChe Journal. 2004; 50(8): 1786–1794. 14 Youngquist GR, Randolph AD. Secondary Nucleation in a Class II System: Ammonium Sulfate-Water. AIChe Journal. 1972; 18(2): 421–429. 15 Matthews HB, Rawlings JB. Batch Crystallization of a Photochemical: Modeling, Control, and Filtration. AIChe Journal. 1998; 44(5): 1119–1127. 16 Togkalidou T, Tung H, Sun Y, Andrews AT, Braatz RD. Parameter Estimation and Optimization of a Loosely Bound Aggregating Pharmaceutical Crystallization Using in Situ Infrared and Laser Backscattering Measurements. Industrial & Engineering Chemistry Research. 2004; 43(19): 6168–6181. 17 Utomo J, Maynard N, Asakuma Y, Maeda K, Fukui K, Tade MO. Experimental Kinetics Studies of Seeded Batch Crystallisation of Mono-Ammonium Phosphate. Advanced Powder Technology. 2010; 21(4): 392–400 18 Corriou JR, Rohani S. Nonlinear Control of a Batch Crystallizer. Chemical Engineering Communications. 2002; 189(10): 1415–1436. 19 Hu Q, Rohani S, Jutan A. Modelling and Optimization of Seeded Batch Crystallizers. Computers & Chemical Engineering. 2005; 29(4): 911–918. 20 Bernardo A, Giulietti M. Modeling of Crystal Growth and Nucleation Rates for Pentaerythritol Batch Crystallization. Chemical Engineering Research & Design. 2010; 88(10A): 1356–1364. 21 Qiu Y, Rasmuson AC. Nucleation and Growth of Succinic Acid in a Batch Cooling Crystallizer. AIChe Journal. 1991; 37(9): 1293–1304. 22 Hao HX, Hou BH, Wang JK, Lin GY. Effect of Solvent on Crystallization Behavior of Xylitol. Journal of Crystal Growth. 2006; 290(1): 192–196. 23 Yang GY, Louhi-Kultanen M, Sha ZL, Kallas J. Determination of Operating Conditions for Controlled Batch Cooling Crystallization. Chemical Engineering & Technology. 2006; 29(2): 200–205. 24 Vollmer U, Raisch J. Control of batch cooling crystallization process based on orbital flatness. Int. J. Control. 2003; 76(16): 1635–1643. 25 Ge M, Wang QG, Chiu MS, Lee TH, Hang CC, Teo KH. An Effective Technique for Batch Process Optimization with Application to Crystallization. Chemical Engineering Research & Design. 2000; 78(A1): 99–106. 26 Tavare NS. Ammonium Sulfate Crystallization in a Cooling Batch Crystallizer. Separation Science and Technology. 1992; 27(11): 1469–1487. 27 Tadayon A, Rohani S, Bennett MK. Estimation of Nucleation and Growth Kinetics of Ammonium Sulfate from Transients of a Cooling Batch Seeded Crystallizer. Industrial & Engineering Chemistry Research. 2002; 41(24): 6181–6193. 28 Nowee SM, Abbas A, Romagnoli JA. Optimization in Seeded Cooling Crystallization: A Parameter Estimation and Dynamic Optimization Study. Chemical Engineering and Processing. 2007; 46(11): 1096–1106. 29 Hulburt HM, Katz S. Some Problems in Particle Technology―A Statistical Mechanical Formulation. Chemical Engineering Science. 1964; 19(8): 555–574. 30 Paengjuntuek W, Kittisupakom P, Arpornwichanop A. Optimization and Nonlinear Control of a Batch Crystallization Process. Journal of the Chinese Institute of Chemical Engineers 39(3): 249-256. 31 Ward JD, Mellichamp DA, Doherty MF. Choosing an Operating Policy for Seeded Batch Crystallization. AIChE Journal. 2006; 52(6): 2046–2054. 32 Timm DC, Cooper TR. Crystallization: Kinetics and Design Considerations. AIChE Journal. 1971; 17(2): 285–288. 33 Desai RM, Rachow JW, Timm DC. Collision Breeding: A Function of Crystal Moment and Degree of Mixing. AIChE Journal. 1974; 20(1): 43–50. 34 Janse AH. Ph.D Thesis, Delft Technical University. 1977. 35 Sikdar SK, Randolph AD. Secondary Nucleation of Two Fast Growth Systems in a Mixed Suspension Crystallizer: Magnesium Sulphate and Citric Acid Water Systems. AIChE Journal. 1976; 22(1): 110–117. 36 Choong KL, Smith R. Optimization of Batch Cooling Crystallization. Chemical Engineering Science. 2004; 59(2): 313–327. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65465 | - |
dc.description.abstract | 本篇研究匯集了七個批次結晶程序之動力模型。電腦最適化結果顯示,後期成長策略有幫助於減少新成核晶體重量。然而,初期成長策略僅當成核級數小於長晶級數時才有減少新晶體重量的效果。此外,我們透過電腦製作晶種分析圖,決定出不同批次反應時間下之臨界晶種負載率,並將其與Kubota所提出之方程式做比較。由比較結果可知Kubota方程式可簡單地決定出臨界晶種負載率,且大致上適用於不同結晶系統。批次總反應時間影響臨界晶種負載率的分析指出,在成核級數大於長晶級數的條件下,總反應時間的增加可以讓晶種負載使用量下降並仍然達到減少新晶體重量的效果。當成核級數大於長晶級數時,增加總反應時間便無法在少量晶種負載下達到減少新晶體重量的效果,此時唯一的好處只在於能獲得較大晶體。 | zh_TW |
dc.description.abstract | Seven published crystallization kinetics from batch crystallizer is compiled, and the simulation and optimization of crystallization process are also provided. The results suggest that a late growth policy would be appropriate to minimize the final nucleated crystal mass. However, an early growth policy seems to be only efficient to minimize the final nucleated crystal mass when nucleation order is smaller than growth order. The critical seed loading ratio is determined for the seven systems with different batch times and compared with Kubota’s equation [JCEJ. 2002; 35(7): 670−676]. It shows that Kubota’s equation is simple and can be easily applied to different crystallization processes. The results of the effect of total batch time on critical seed loading ratio indicate increasing batch time can reduce nucleated mass with low seed loading as nucleation order is larger than growth order. When nucleation order is smaller than growth order, increasing batch time can only increase the final product size and is improper of reducing nucleated mass with low seed loading. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:44:44Z (GMT). No. of bitstreams: 1 ntu-101-R99524069-1.pdf: 2535799 bytes, checksum: 15d514d131b2db57d6103f267a1c44eb (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi 1. Introduction 1 1.1 Overview 1 1.2 Literature Survey 2 1.3 Review of Batch Crystallization Kinetics 5 1.4 Thesis Organization 7 2. Model 10 2.1 Modeling of Batch Crystallizer 10 2.2 Trajectory 14 2.3 Seed Properties 16 2.4 Optimization 18 3. Case Studies 21 3.1 Overview 21 3.2 Pentaerythritol 23 3.3 Potassium nitrate 30 3.4 Succinic acid 34 3.5 Xylitol 41 3.6 Potassium alum 45 3.7 Potassium dihydrogen phosphate 49 3.8 Potassium sulphate 54 3.9 Summary 59 4. Critical Seed Loading Ratios and Seed Charts 62 4.1 Overview 62 4.2 Seed Chart 64 4.3 Empirical Equations for vs 71 4.4 Effect of Kinetics on Total Batch Time 84 5. Conclusions 94 Nomenclature 97 References 100 | |
dc.language.iso | en | |
dc.title | 批次結晶程序之動力模型彙整及分析 | zh_TW |
dc.title | Compilation and Analysis of Batch Crystallization Kinetics | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳誠亮(Cheng-Liang Chen),錢義隆(I-Lung Chien),蕭立鼎(Lie-Ding Shiau) | |
dc.subject.keyword | 結晶動力模型彙整,初期成長,臨界晶種負載率,晶種分析圖,批次總反應時間, | zh_TW |
dc.subject.keyword | crystallization kinetics compilation,early growth,critical seed loading ratio,seed chart,total batch time, | en |
dc.relation.page | 105 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 2.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。