請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65456完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何國川(Kuo-Chuan Ho) | |
| dc.contributor.author | Lu-Yin Lin | en |
| dc.contributor.author | 林律吟 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:44:14Z | - |
| dc.date.available | 2017-07-30 | |
| dc.date.copyright | 2012-07-30 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-24 | |
| dc.identifier.citation | 1. M. Gratzel, Inorganic Chemistry, 2005, 44, 6841.
2. B. O'Regan and M. Gratzel, Nature, 1991, 353, 737. 3. W. J. Lee, E. Ramasamy, D. Y. Lee and J. S. Song, Solar Energy Materials and Solar Cells, 2007, 91, 1676. 4. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chemical Reviews, 2010, 110, 6595. 5. G. Benko, J. Kallioinen, J. E. I. Korppi-Tommola, A. P. Yartsev and V. Sundstrom, Journal of the American Chemical Society, 2002, 124, 489. 6. G. Ramakrishna, D. A. Jose, D. K. Kumar, A. Das, D. K. Palit and H. N. Ghosh, Journal of Physical Chemistry B, 2005, 109, 15445. 7. J. B. Asbury, R. J. Ellingson, H. N. Ghosh, S. Ferrere, A. J. Nozik and T. Lian, Journal of Physical Chemistry B, 1999, 103, 3110. 8. B. O'Regan, J. Moser, M. Anderson and M. Gratzel, Journal of Physical Chemistry, 1990, 94, 8720. 9. S. Sodergren, A. Hagfeldt, J. Olsson and S. E. Lindquist, Journal of Physical Chemistry, 1994, 98, 5552. 10. P. Wang, B. Wenger, R. Humphry Baker, J. E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E. V. Stoyanov, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society, 2005, 127, 6850. 11. M. Gratzel, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3. 12. J. Bisquert, D. Cahen, G. Hodes, S. Ruhle and A. Zaban, Journal of Physical Chemistry B, 2004, 108, 8106. 13. M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya and T. Miyasaka, Solar Energy Materials and Solar Cells, 2009, 93, 836. 14. K. Onoda, S. Ngamsinlapasathian, T. Fujieda and S. Yoshikawa, Solar Energy Materials and Solar Cells, 2007, 91, 1176. 15. S. Q. Fan, C. J. Li, G. J. Yang, L. Z. Zhang, J. C. Gao and Y. X. Xi, Journal of Thermal Spray Technology, 2007, 16, 893. 16. E. Joanni, R. Savu, M. de Sousa Goes, P. R. Bueno, J. N. de Freitas, A. F. Nogueira, E. Longo and J. A. Varela, Scripta Materialia, 2007, 57, 277. 17. J. Conradt, J. Sartor, C. Thiele, F. Maier Flaig, J. Fallert, H. Kalt, R. Schneider, M. Fotouhi, P. Pfundstein, V. Zibat and D. Gerthsen, The Journal of Physical Chemistry C, 2011, 115, 3539. 18. T. N. Murakami, Y. Kijitori, N. Kawashima and T. Miyasaka, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 187. 19. Y. Kijitori, M. Ikegami and T. Miyasaka, Chemistry Letters, 2007, 36, 190. 20. T. Miyasaka, M. Ikegami and Y. Kijitori, Journal of the Electrochemical Society, 2007, 154, A455. 21. T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai and H. Arakawa, Solar Energy Materials and Solar Cells, 2010, 94, 812. 22. H. Lindstrom, A. Holmberg, E. Magnusson, L. Malmqvist and A. Hagfeldt, Journal of Photochemistry and Photobiology a-Chemistry, 2001, 145, 107. 23. G. Boschloo, H. Lindstrom, E. Magnusson, A. Holmberg and A. Hagfeldt, Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 11. 24. D. Zhang, T. Yoshida and H. Minoura, Advanced Materials, 2003, 15, 814. 25. T. Miyasaka, Y. Kijitori, T. N. Murakami, M. Kimura and S. Uegusa, Chemistry Letters, 2002, 1250. 26. T. Miyasaka and Y. Kijitori, Journal of the Electrochemical Society, 2004, 151, A1767. 27. H. G. Yun, Y. Jun, J. Kim, B. S. Bae and M. G. Kang, Applied Physics Letters, 2008, 93, 133311. 28. Y. Jun, J. Kim and M. Kang, Solar Energy Materials and Solar Cells, 2007, 91, 779. 29. M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang and K. J. Kim, Solar Energy Materials and Solar Cells, 2006, 90, 574. 30. H. G. Yun, B. S. Bae and M. G. Kang, Advanced Energy Materials, 2011, 1, 337. 31. C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh and J.-M. Wu, Journal of Materials Chemistry, 2011, 21, 5114. 32. L. Y. Lin, C. P. Lee, R. Vittal and K. C. Ho, Journal of Power Sources, 2010, 195, 4344. 33. K. Fan, T. Peng, B. Chai, J. Chen and K. Dai, Electrochimica Acta, 2010, 55, 5239. 34. H. Wang, Y. Liu, H. Huang, M. Zhong, H. Shen, Y. Wang and H. Yang, Applied Surface Science, 2009, 255, 9020. 35. S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Pechy, M. K. Nazeeruddin and M. Gratzel, Chemical Communications, 2006, 4004. 36. Y. Jun and M. G. Kang, Journal of the Electrochemical Society, 2007, 154, B68. 37. M. G. Kang, N. G. Park, K. S. Ryu, S. H. Chang and K. J. Kim, Chemistry Letters, 2005, 34, 804. 38. D. Xia, Y. B. Jiang, X. He and S. R. J. Brueck, Applied Physics Letters, 2010, 97, 223106. 39. L. Y. Lin, P. C. Nien, C. P. Lee, K. W. Tsai, M. H. Yeh, R. Vittal and K. C. Ho, Journal of Physical Chemistry C, 2010, 114, 21808. 40. L. Y. Lin, C. P. Lee, K. W. Tsai, M. H. Yeh, C. Y. Chen, R. Vittal, C. G. Wu and K. C. Ho, Progress in Photovoltaics: Research and Applications, 2012, 20, 181. 41. W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao and Y. Lin, Electrochimica Acta, 2009, 54, 4467. 42. L. L. Li, C. Y. Tsai, H. P. Wu, C. C. Chen and E. W. G. Diau, Journal of Materials Chemistry, 2010, 20, 2753. 43. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, Journal of Physical Chemistry B, 2006, 110, 16179. 44. C. S. Rustomji, C. J. Frandsen, S. Jin and M. J. Tauber, Journal of Physical Chemistry B, 2010, 114, 14537. 45. C. C. Chen, H. W. Chung, C. H. Chen, H. P. Lu, C. M. Lan, S. F. Chen, L. Luo, C. S. Hong and E. W. G. Diau, Journal of Physical Chemistry C, 2008, 112, 19151. 46. X. Pan, C. Chen, K. Zhu and Z. Fan, Nanotechnology, 2011, 22, 235402. 47. Y. Alivov and Z. Y. Fan, Applied Physics Letters, 2009, 95, 063504. 48. J. G. Chen, C. Y. Chen, C. G. Wu, C. Y. Lin, Y. H. Lai, C. C. Wang, H. W. Chen, R. Vittal and K. C. Ho, Journal of Materials Chemistry, 2010, 20, 7201. 49. L. Y. Lin, M. H. Yeh, C. P. Lee, Y. H. Chen, R.Vittal and K. C. Ho, Electrochimica Acta, 2011, 57, 270. 50. H. G. Yun, J. H. Park, B. S. Bae and M. G. Kang, Journal of Materials Chemistry, 2011, 21, 3558. 51. C. Y. Huang, Y. C. Hsu, J. G. Chen, V. Suryanarayanan, K. M. Lee and K. C. Ho, Solar Energy Materials and Solar Cells, 2006, 90, 2391. 52. M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, Nano Letters, 2005, 5, 1789. 53. I. Bedja, S. Hotchandani and P. V. Kamat, Journal of Physical Chemistry, 1994, 98, 4133. 54. D. Liu, G. L. Hug and P. V. Kamat, Journal of Physical Chemistry, 1995, 99, 16768. 55. Y. Shi, H. Dong, L. Wang, C. Zhan, R. Gao and Y. Qiu, Journal of Materials Chemistry, 2011, 21, 3183. 56. Y. H. Lai, C. Y. Lin, H. W. Chen, J. G. Chen, C. W. Kung, R. Vittal and K. C. Ho, Journal of Materials Chemistry, 2010, 20, 9379. 57. Q. Zhang, C. S. Dandeneau, X. Zhou and G. Cao, Advanced Materials, 2009, 21, 4087. 58. K. Sayama, H. Sugihara and H. Arakawa, Chemistry of Materials, 1998, 10, 3825. 59. N. Vlachopoulos, P. Liska, J. Augustynski and M. Gratzel, Journal of the American Chemical Society, 1988, 110, 1216. 60. M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J. F. Guillemoles and J. P. Jolivet, Thin Solid Films, 2004, 451-452, 86. 61. A. Kay and M. Gratzel, Solar Energy Materials and Solar Cells, 1996, 44, 99. 62. K. Kalyanasundaram and M. Gratzel, Coordination Chemistry Reviews, 1998, 177, 347. 63. L. M. Goncalves, V. De Zea Bermudez, H. A. Ribeiro and A. M. Mendes, Energy and Environmental Science, 2008, 1, 655. 64. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc Le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, ACS Nano, 2009, 3, 3103. 65. Z. Ning, Y. Fu and H. Tian, Energy and Environmental Science, 2010, 3, 1170. 66. M. Gratzel, Chemistry Letters, 2005, 34, 8. 67. T. Peng, A. Hasegawa, J. Qiu and K. Hirao, Chemistry of Materials, 2003, 15, 2011. 68. A. El Ruby Mohamed and S. Rohani, Energy & Environmental Science, 2011, 4, 1065. 69. M. Myahkostupov, M. Zamkov and F. N. Castellano, Energy & Environmental Science, 2011, 4, 998. 70. J. Qu, G. R. Li and X. P. Gao, Energy & Environmental Science, 2010, 3, 2003. 71. K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Letters, 2007, 7, 69. 72. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Letters, 2006, 6, 215. 73. Y. Wang, H. Yang, Y. Liu, H. Wang, H. Shen, J. Yan and H. Xu, Progress in Photovoltaics: Research and Applications, 2010, 18, 285. 74. S. Hore, C. Vetter, R. Kern, H. Smit and A. Hinsch, Solar Energy Materials and Solar Cells, 2006, 90, 1176. 75. K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K. S. Choi and C. A. Grimes, Journal of Physical Chemistry C, 2009, 113, 6327. 76. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Solar Energy Materials and Solar Cells, 2006, 90, 2011. 77. H. Wang, C. T. Yip, K. Y. Cheung, A. B. Djurišić, M. H. Xie, Y. H. Leung and W. K. Chan, Applied Physics Letters, 2006, 89, 023508. 78. K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes, Nanotechnology, 2007, 18, 065707. 79. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai and C. A. Grimes, Journal of Physical Chemistry C, 2007, 111, 14992. 80. C. C. Chen, W. D. Jehng, L. L. Li and E. W. G. Diau, Journal of the Electrochemical Society, 2009, 156, C304. 81. D. Kim, A. Ghicov and P. Schmuki, Electrochemistry Communications, 2008, 10, 1835. 82. C. J. Lin, W. Y. Yu, Y. T. Lu and S. H. Chien, Chemical Communications, 2008, 6031. 83. K. Nakayama, T. Kubo and Y. Nishikitani, Applied Physics Express, 2008, 1, 112301. 84. H. Xu, X. Tao, D. T. Wang, Y. Z. Zheng and J. F. Chen, Electrochimica Acta, 2010, 55, 2280. 85. G. C. Vougioukalakis, A. I. Philippopoulos, T. Stergiopoulos and P. Falaras, Coordination Chemistry Reviews, 2011, 255, 2602. 86. R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian and A. J. Nozik, Journal of Physical Chemistry B, 1998, 102, 6455. 87. M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte and M. Gratzel, Chemical Communications, 2003, 1456. 88. M. K. Nazeeruddin, P. Pechy and M. Gratzel, Chemical Communications, 1997, 1705. 89. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nature Materials, 2003, 2, 402. 90. D. Shi, N. Pootrakulchote, R. Li, J. Guo, Y. Wang, S. M. Zakeeruddin, M. Gratzel and P. Wang, Journal of Physical Chemistry C, 2008, 112, 17046. 91. C. Y. Lee and J. T. Hupp, Langmuir, 2010, 26, 3760. 92. H. Imahori, Y. Matsubara, H. Iijima, T. Umeyama, Y. Matano, S. Ito, M. Niemi, N. V. Tkachenko and H. Lemmetyinen, Journal of Physical Chemistry C, 2010, 114, 10656. 93. C. Li, Z. Liu, J. Schoneboom, F. Eickemeyer, N. G. Pschirer, P. Erk, A. Herrmann and K. Mullen, Journal of Materials Chemistry, 2009, 19, 5405. 94. Y. Jin, J. Hua, W. Wu, X. Ma and F. Meng, Synthetic Metals, 2008, 158, 64. 95. W. Wu, J. Hua, Y. Jin, W. Zhan and H. Tian, Photochemical & Photobiological Sciences, 2008, 7, 63. 96. X. Ma, J. Hua, W. Wu, Y. Jin, F. Meng, W. Zhan and H. Tian, Tetrahedron, 2008, 64, 345. 97. S. Hattori, T. Hasobe, K. Ohkubo, Y. Urano, N. Umezawa, T. Nagano, Y. Wada, S. Yanagida and S. Fukuzumi, Journal of Physical Chemistry B, 2004, 108, 15200. 98. J. R. Mann, M. K. Gannon, T. C. Fitzgibbons, M. R. Detty and D. F. Watson, Journal of Physical Chemistry C, 2008, 112, 13057. 99. K. Sayama, K. Hara, H. Sugihara, H. Arakawa, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi and Y. Abe, Chemical Communications, 2000, 1173. 100. K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga and H. Arakawa, Solar Energy Materials and Solar Cells, 2003, 80, 47. 101. K. Hara, K. Sayama, H. Arakawa, Y. Ohga, A. Shinpo and S. Suga, Chemical Communications, 2001, 569. 102. Z. S. Wang, Y. Cui, Y. Danoh, C. Kasada, A. Shinpo and K. Hara, Journal of Physical Chemistry C, 2007, 111, 7224. 103. Y. S. Chen, C. Li, Z. H. Zeng, W. B. Wang, X. S. Wang and B. W. Zhang, Journal of Materials Chemistry, 2005, 15, 1654. 104. Z. S. Wang, F. Y. Li and C. H. Huang, Chemical Communications, 2000, 2063. 105. W. H. Howie, F. Claeyssens, H. Miura and L. M. Peter, Journal of the American Chemical Society, 2008, 130, 1367. 106. F. Guo, S. Qu, W. Wu, J. Li, W. Ying and J. Hua, Synthetic Metals, 2010, 160, 1767. 107. S. Qu, W. Wu, J. Hua, C. Kong, Y. Long and H. Tian, Journal of Physical Chemistry C, 2010, 114, 1343. 108. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, Chemistry of Materials, 2010, 22, 1915. 109. A. Mishra, M. K. R. Fischer and P. Bauerle, Angewandte Chemie International Edition, 2009, 48, 2474. 110. S. M. Feldt, G. Wang, G. Boschloo and A. Hagfeldt, The Journal of Physical Chemistry C, 2011, 115, 21500. 111. H. Tian and L. Sun, Journal of Materials Chemistry, 2011, 21, 10592. 112. Z. Yu, N. Vlachopoulos, M. Gorlov and L. Kloo, Dalton Transactions, 2011, 40, 10289. 113. Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang and P. Wang, Chemical Communications, 2011, 4376. 114. T. W. Hamann, O. K. Farha and J. T. Hupp, Journal of Physical Chemistry C, 2008, 112, 19756. 115. S. Hattori, Y. Wada, S. Yanagida and S. Fukuzumi, Journal of the American Chemical Society, 2005, 127, 9648. 116. T. C. Li, A. M. Spokoyny, C. She, O. K. Farha, C. A. Mirkin, T. J. Marks and J. T. Hupp, Journal of the American Chemical Society, 2010, 132, 4580. 117. Z. S. Wang, K. Sayama and H. Sugihara, Journal of Physical Chemistry B, 2005, 109, 22449. 118. B. V. Bergeron, A. Marton, G. Oskam and G. J. Meyer, Journal of Physical Chemistry B, 2005, 109, 937. 119. G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, Journal of Physical Chemistry B, 2001, 105, 6867. 120. A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Gratzel, Science, 2011, 334, 629. 121. G. Khelashvili, S. Behrens, A. Hinsch, W. Habicht, D. Schild, A. Eichhofer, R. Sastrawan, K. Skupien, E. Dinjus and H. Bonnemann, Thin Solid Films, 2007, 515, 4074. 122. K. Murakami, S. Fujiwara, D. Kobayashi, H. Ishihara and M. Shimomura, Advanced Materials Research, 2011, 222, 126. 123. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry, 2004, 570, 257. 124. G. Khelashvili, S. Behrens, C. Weidenthaler, C. Vetter, A. Hinsch, R. Kern, K. Skupien, E. Dinjus and H. Bonnemann, Thin Solid Films, 2006, 511-512, 342. 125. T. Yohannes and O. Inganas, Solar Energy Materials and Solar Cells, 1998, 51, 193. 126. Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 153. 127. Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, Chemistry Letters, 2002, 1060. 128. S. Ahmad, J. H. Yum, Z. Xianxi, M. Gratzel, H. J. Butt and M. K. Nazeeruddin, Journal of Materials Chemistry, 2010, 20, 1654. 129. S. Ahmad, J. H. Yum, H. J. Butt, M. K. Nazeeruddin and M. Gratzel, ChemPhysChem, 2010, 11, 2814. 130. G. Heywang and F. Jonas, Advanced Materials, 1992, 4, 116. 131. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin and S. Hao, Journal of Power Sources, 2008, 181, 172. 132. Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang and Y. Deng, Electrochemistry Communications, 2009, 11, 1768. 133. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura and K. Murata, Solar Energy Materials and Solar Cells, 2003, 79, 459. 134. T. Hino, Y. Ogawa and N. Kuramoto, Fullerenes Nanotubes and Carbon Nanostructures, 2006, 14, 607. 135. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen and Q. Meng, Electrochemistry Communications, 2007, 9, 596. 136. F. Cai, J. Chen and R. Xu, Chemistry Letters, 2006, 35, 1266. 137. K. Miettunen, I. Asghar, X. Ruan, J. Halme, T. Saukkonen and P. Lund, Journal of Electroanalytical Chemistry, 2011, 653, 93. 138. M. Gratzel, Accounts of Chemical Research, 2009, 42, 1788. 139. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Journal of the American Chemical Society, 1993, 115, 6382. 140. Z. B. Xie, S. Adams, D. J. Blackwood and J. Wang, Nanotechnology, 2008, 19, 405701. 141. L. Han, N. Koide, Y. Chiba and T. Mitate, Applied Physics Letters, 2004, 84, 2433. 142. L. Han, N. Koide, Y. Chiba, A. Islam and T. Mitate, Comptes Rendus Chimie, 2006, 9, 645. 143. P. S. Awati, S. V. Awate, P. P. Shah and V. Ramaswamy, Catalysis Communications, 2003, 4, 393. 144. E. A. Kozlova, P. G. Smirniotis and A. V. Vorontsov, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 503. 145. K. Y. Jung, S. B. Park and H. D. Jang, Catalysis Communications, 2004, 5, 491. 146. Y. Bessekhouad, D. Robert and J. V. Weber, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 47. 147. N. Daneshvar, D. Salari and A. R. Khataee, Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 111. 148. L. C. Chen, F. R. Tsai, S. H. Fang and Y. C. Ho, Electrochimica Acta, 2009, 54, 1304. 149. Y. Wang, G. Zhou, T. Li, W. Qiao and Y. Li, Catalysis Communications, 2009, 10, 412. 150. Y. Zhao, X. Zhang, J. Zhai, J. He, L. Jiang, Z. Liu, S. Nishimoto, T. Murakami, A. Fujishima and D. Zhu, Applied Catalysis B: Environmental, 2008, 83, 24. 151. Y. Zhao, X. Zhang, J. Zhai, L. Jiang, Z. Liu, S. Nishimoto, T. Murakami, A. Fujishima and D. Zhu, Microporous and Mesoporous Materials, 2008, 116, 710. 152. L. G. Devi, S. G. Kumar, B. N. Murthy and N. Kottam, Catalysis Communications, 2009, 10, 794. 153. R. Rosal, A. Rodriguez, M. S. Gonzalo and E. Garcia Calvo, Applied Catalysis B: Environmental, 2008, 84, 48. 154. J. Trager, H. C. Kim and N. Hampp, Nature Photonics, 2007, 1, 509. 155. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Journal of Physical Chemistry B, 2003, 107, 4374. 156. S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori and S. Yanagida, Journal of Physical Chemistry B, 2002, 106, 10004. 157. A. I. Popov and R. F. Swensen, Journal of the American Chemical Society, 1955, 77, 3724. 158. H. Usui, H. Matsui, N. Tanabe and S. Yanagida, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 97. 159. C. Longo, A. F. Nogueira, M. A. De Paoli and H. Cachet, Journal of Physical Chemistry B, 2002, 106, 5925. 160. L. N. Lewis, J. L. Spivack, S. Gasaway, E. D. Williams, J. Y. Gui, V. Manivannan and O. P. Siclovan, Solar Energy Materials and Solar Cells, 2006, 90, 1041. 161. G. Kron, U. Rau and J. H. Werner, Journal of Physical Chemistry B, 2003, 107, 13258. 162. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu and E. Abe, Thin Solid Films, 2005, 472, 242. 163. T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma and E. Abe, Journal of Electroanalytical Chemistry, 2004, 574, 77. 164. S. Chappel, S. G. Chen and A. Zaban, Langmuir, 2002, 18, 3336. 165. S. G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chemistry of Materials, 2001, 13, 4629. 166. Y. Diamant, S. G. Chen, O. Melamed and A. Zaban, Journal of Physical Chemistry B, 2003, 107, 1977. 167. A. Kay and M. Gratzel, Chemistry of Materials, 2002, 14, 2930. 168. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Chemical Communications, 2002, 1464. 169. E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Journal of the American Chemical Society, 2003, 125, 475. 170. J. Bandara, C. M. Divarathne and S. D. Nanayakkara, Solar Energy Materials and Solar Cells, 2004, 81, 429. 171. P. K. M. Bandaranayake, P. V. V. Jayaweera and K. Tennakone, Solar Energy Materials and Solar Cells, 2003, 76, 57. 172. S. A. Haque, E. Palomares, H. M. Upadhyaya, L. Otley, R. J. Potter, A. B. Holmes and J. R. Durrant, Chemical Communications, 2003, 3008. 173. Z. S. Wang, C. H. Huang, Y. Y. Huang, Y. J. Hou, P. H. Xie, B. W. Zhang and H. M. Cheng, Chemistry of Materials, 2001, 13, 678. 174. S. Yang, Y. Huang, C. Huang and X. Zhao, Chemistry of Materials, 2002, 14, 1500. 175. T. Taguchi, X. T. Zhang, I. Sutanto, K. I. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragam and A. Fujishima, Chemical Communications, 2003, 2480. 176. Q. Yu, H. Yang, W. Fu, L. Chang, J. Xu, C. Yu, R. Wei, K. Du, H. Zhu and M. Li, Thin Solid Films, 2007, 515, 3840. 177. P. Hasin, M. A. Alpuche Aviles, Y. Li and Y. Wu, Journal of Physical Chemistry C, 2009, 113, 7456. 178. M. H. Yeh, C. P. Lee, L. Y. Lin, P. C. Nien, P. Y. Chen, R. Vittal and K. C. Ho, Electrochimica Acta, 2011, 56, 6157. 179. Y. Liu, R. Liu, C. Liu, S. Luo, L. Yang, F. Sui, Y. Teng, R. Yang and Q. Cai, Journal of Hazardous Materials, 2010, 182, 912. 180. L. Xie, G. Yin, D. Yan, X. Liao, Z. Huang, Y. Yao, Y. Kang and Y. Liu, Journal of Materials Science: Materials in Medicine, 2009, 21, 259. 181. J. M. Wu, Journal of Crystal Growth, 2004, 269, 347. 182. C. H. Liu, P. C. Juan, C. P. Cheng, G. T. Lai, H. Lee, Y. K. Chen, Y. W. Liu and C. W. Hsu In Structural properties of ultra-thin Y2O3 gate dielectrics studied by X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS), Hongkong, Hongkong, 2010; pp 1256. 183. Z. Radovic Hrapovic and G. Jerkiewicz, Journal of Electroanalytical Chemistry, 2001, 499, 61. 184. S. A. Sheppard, S. A. Campbell, J. R. Smith, G. W. Lloyd, F. C. Walsh and T. R. Ralph, Analyst, 1998, 123, 1923. 185. M. Wu, X. Lin, A. Hagfeldt and T. Ma, Chemical Communications, 2011, 4535. 186. Q. W. Jiang, G. R. Li and X. P. Gao, Chemical Communications, 2009, 6720. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65456 | - |
| dc.description.abstract | 本論文分為三大部分,主要探討以鈦版為光電極基材之可撓式背面照光染料敏化太陽能電池。
第一部分為改善此系統之元件效能及增加其長期穩定性之基礎探討。首先,本研究針對此系統之重要製程參數進行基礎研究探討:沉積白金對電極濺鍍時間、製備二氧化鈦/鈦版基材光電極燒結溫度、鈦板基材厚度及電解液組成。在針對各條件最佳化後,其元件光電轉換效率可達5.95%。同時,本研究發現背照式染料敏化太陽能電池之長期穩定性優於傳統正面照光染料敏化太陽能電池,主要由於電解液中的碘會吸收紫外光,紫外光減少將抑制染料分子於二氧化鈦表面脫附發生。相較於一般正照式系統,本研究中之背照式系統在經過連續五百小時照光後仍保有優良穩定性。 然而,此系統主要缺點為二氧化鈦/鈦版基材於高溫燒結後所產生之非晶相金屬氧化物及背面照光所導致較低入射光強度。經由製備二氧化鈦/鈦版基材光電極過程中,高溫燒結所產生於鈦板基材表面之非晶相金屬氧化物將會阻礙電子傳輸,導致元件效能下降。而由於鈦板基材不透光的特性,太陽光必須由白金對電極入射,以致此系統之入射光強 度比起一般正照式染料敏化太陽能電池低,導致激發染料電子量下降並減少光電流產生。有鑑於此,第二部分將針對前述兩項缺點提出解決方法。為了減少高溫製程中所產生之非晶相金屬氧化物,本研究利用不含膠黏劑之二氧化鈦漿料,製備二氧化鈦/鈦版基材光電極,並對此光電極進行較低溫度燒結,以降低非晶相金屬氧化物生成。本研究結果發現含有有機膠黏劑之二氧化鈦漿料並不適用低溫燒結製程,因為低溫燒結無法完全去除此漿料中之有機膠黏劑,使其殘留於二氧化鈦薄膜阻礙電子傳輸。本研究提出使用不含有機膠黏劑之二氧化鈦漿料於較低溫製程中(350 oC),所製備光電極之元件光電轉換效率可達到4.34%,近乎與使用含有機膠黏劑之二氧化鈦漿料於較高溫製程中(450 oC),所製備光電極所製備之元件效能(4.33%)。結果顯示使用不含膠黏劑之二氧化鈦漿料於低溫製程來製備元件將有效減少製備成本及能量消耗。為了有效提高經由背面入射光之強度,本研究提出具有網狀結構之白金對電極增加此系統之背面入射光強度。在白金濺鍍電流40 mA 及濺鍍時間5 s 條件下,網狀白金對電極具有高達99%之穿透度,高於一般非網狀白金對電極92%之穿透度。即便是網狀白金對電極對於電解液之氧化還原對催化能力稍不及一般非網狀白金對電極,但其高穿透度之優點使其組成之元件擁有較優良之效能表現,其光電轉換效率可達4.77%。 第三部分中,本研究引入具有高傳導電子速度之二氧化鈦奈米管,來彌補傳統二氧化鈦奈米粒子於粒子間眾多晶界而造成之低傳導電子速率。由於電子於一維結構之二氧化鈦奈米管中具有較高傳輸能力及較低再結合發生機會,此結構在近幾年來已被廣泛探討,但其低表面積之缺點限制其應用範圍。本研究提出兩項方法來彌補此結構低表面積之缺點。首先,本研究提出以二氧化鈦奈米管為底層,二氧化鈦奈米粒子為頂層之複合結構,結合二氧化鈦奈米管及二氧化鈦奈米粒子優點於光電極。二氧化鈦奈米管不但能加速電子傳輸,且能增加二氧化鈦奈米粒子與鈦版間接觸,而二氧化鈦奈米粒子能提供高染料吸附表面積,進一步提升電子激發量。以此複合結構光電極所製備之元件效能可達到6.68%的光電轉換效率,高於以二氧化鈦奈米粒子製備光電極之元件效能(5.55%)。再者,本研究提出將二氧化鈦奈米粒子利用化學法填充到二氧化鈦奈米管之內層及外層,使得此複合膜具有高表面積及高電子傳遞速度的特性。以此複合結構光電極所製備之元件效能可達到6.45%的光電轉換效率,高於以二氧化鈦奈米粒子製備光電極之元件效能(4.21%)。另一方面,許多研究學者利用增加二氧化鈦奈米管長度來增加其表面積,進而提高其染料吸附量;然而,其開環電壓卻會因管長過長所導致電子再結合而急遽下降。有鑑於上述缺點,本研究首先探討二氧化鈦奈米管之管長來彌補其表面積較小之缺點,並進一步利用氧化釔修飾二氧化鈦奈米管表面來彌補其開環電壓下降。此修飾使二氧化鈦之傳導帶向負方向移動,並能降低電子再結合發生機會,進一步改善電池效能表現。在相同管長條件下,經由氧化釔修飾二氧化鈦奈米管製備之元件光電轉換效率可達6.52%,高於以二氧化鈦奈米管所製備之元件光電轉換效率(5.35%)。 對於可撓式染料敏化太陽能電池,不僅是如前幾章提到的可撓式光電極重要,可撓式對電極也是不可或缺的要素。傳統上,研究學者以陽極蝕刻法於鈦板表面製備二氧化鈦奈米管並應用於光電極。然而,本研究中最後一章節利用具有二氧化鈦奈米管印記之鈦板作為對電極基材,此二氧化鈦奈米管印記於超音波震盪移除鈦板上之二氧化鈦奈米管後形成於鈦板上。利用此具有印記之鈦板比起一般無印記之鈦板有較高白金濺鍍表面積,對於電解液中氧化還原反應有較高催化能力。以此具有印記之鈦板所製備之元件光電轉換效率可達9.35%,高於以無印記之鈦板所製備之元件光電轉換效率(7.81%)。 | zh_TW |
| dc.description.abstract | There are three parts in this dissertation aim to investigate the Ti foil-based photoanodes for back-illuminated dye-sensitized solar cells (DSSCs).
In the first part, the fundamental researches in this system was made to improve the cell performance and the durability. The effects of Pt sputtering periods on the counter electrode, sintering temperatures for TiO2/Ti foil based photoanodes, thickness of Ti foils, and the composition of the electrolyte were investigated. A solar-to-electricity conversion efficiency (η) of 5.95% was obtained after optimizations of these parameters. Meanwhile, the improved durability was found for back-illuminated DSSCs, due to the absorption of UV-rays by the iodine in the electrolyte. The back-illuminated DSSC shows a good durability even under continuous illumination of 100 mW/cm2 light intensity least for 500 h. The main challenges in this system lie on the formation of amorphous metal oxide between the TiO2 semiconductor layer and the Ti foil with sintering process to hinder the transfer of electrons and the lower incident light caused by back illumination, resulting in less dye-excitation and reduction of the photocurrent density. In the second part, strategies to solve the challenges of formation of amorphous metal oxide and back illumination are proposed. A binder-free TiO2 paste was used for the TiO2/Ti foil based photoanode with a low temperature sintering process to minimize the formation of amorphous metal oxides. It cannot be realized with a TiO2 paste with binder, because the residual of the organic binder in the TiO2 films of the photoanodes fabricated in a low sintering temperature would act as obstacles for electron transportation and reduce cell performance. It was evidenced that the DSSC with the TiO2 film fabricated with a binder-free TiO2 paste sintered at a relatively low temperature shows competitive performance (350 oC, η = 4.34%) to the cell with a TiO2 paste with bindersintered at higher temperature (450 oC, η = 4.33%). Therefore, the energy consumption can be reduced with this low temperature sintering process. Net-like Pt counter electrodes were made to increase the incident light illuminated from the back side of the cell. Higher transmittance of an average value of 99% was obtained for net-like Pt counter electrodes, with compared to that of 92% for a bare one, under Pt sputtering current of 40 mA for 5 s. Even the catalytic ability of the Pt layer is worse for net-like Pt counter electrodes caused by less Pt deposition, their higher transmittances lead to the better performance for the pertinent DSSC (η = 4.77%). Other than applying TiO2 nanoparticles (TNPs) as the semiconductor layer for the studies mentioned above, the other structure with higher electron transferring rate was introduced in the last part to compensate for the lower electron transportation in TNPs caused by numerous boundaries between TNPs. One-dimensional TiO2 nanotubes (TNTs) were widely used in the recent years because it exhibits better electron transportation and can reduce the loss of electrons by recombination. However, its smaller surface area as compared to that of TNPs limits its application. Two methods were proposed to solve this problem. One is to combine the TNTs with TNPs, and there are two ways applied in this dissertation, i.e., fabrication of a layer-by-layer structure and infiltration of TNPs into TNTs. For the layer-by-layer structure, the underlayer TNTs improves the electron transportation and increase contact points between Ti foil and TNPs, while TNPs overlayer provides larger surface area for dye adsorption. The pertinent DSSC exhibited a η of 6.68% with compared to that of the cell with only TNPs (η = 5.55%). For the TNTs infiltrated with TNPs, this composite film possesses higher surface area and higher electrons transfer rate, and η of 6.45% and 4.21% were obtained for the DSSC with the composite film and bare TNTs on the photoanodes, respectively. The other method to solve the problem of smaller surface area of TNTs is to increase their length, but the open-circuit voltage will decrease at the same time. A core-shell structure was applied with a yttrium oxide thin film on the surface of TNTs tocompensate for the lower open-circuit voltage with longer TNTs made to increase the surface area. The η of the pertinent DSSC was improved to 6.52% with compared to that of 5.35% for the DSSC with bare TNTs. For a flexible DSSC, not only a flexible photoanode but a flexible counter electrode is indispensable. Traditionally, the Ti foils are anodized for making TNTs and applied in a photoanode. However, in the last chapter in the last part, the imprints of TNTs were utilized by first fabricating TNTs on Ti foils by anodization and removing TNTs completely from Ti foils by ultrasonically vibration. The resulting Ti foils with TNTs imprints was applied as the substrate of counter electrodes with highly active surface area for Pt sputtering. These counter electrodes exhibit better catalytic ability for I-/I3- redox reaction. An extremely high η of 9.35% was obtained for the DSSC with a Pt-sputtered Ti foil with TNT imprints on its surface as the counter electrode, which is much higher than that for the cell with bare Ti foil as the substrate of its counter electrode (7.81%). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:44:14Z (GMT). No. of bitstreams: 1 ntu-101-F97524011-1.pdf: 7025475 bytes, checksum: a06d3562aa0b04eb13e88b9830b0c95b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1. Crystalline silicon 2 1.1.1. Monocrystalline silicon 2 1.1.2. Polycrystalline silicon or multicrystalline silicon 2 1.2. Thin films 2 1.2.1. Cadmium telluride solar cell 2 1.2.2. CIGS (Copper indium gallium seleride) 2 1.2.3. Organic/polymer solar cells 3 1.2.4. Silicon thin films 3 1.2.5. Dye-sensitized solar cells (DSSCs) 3 Chapter 2 Experimental 19 2.1. Materials 19 2.2. Fabrication of photoanodes 20 2.3. Fabrication of counter electrodes 20 2.4. Assembly of DSSCs 21 2.5. Instruments 21 2.5.1. Atomic force microscopy (AFM) Solar simulator 21 2.5.2. Cyclic voltammetry (CV) 21 2.5.3. Electrochemical impedance spectra (EIS) 21 2.5.4. Fourier–transform infrared spectroscopy (FT–IR) 21 2.5.5. Film thickness determination 22 2.5.6. Pulsed laser excitation 22 2.5.7. Solar simulator 22 2.5.8. Scanning electron microscope (SEM) 22 2.5.9. Transmission electron microscopy (TEM) 23 2.5.10. Ultraviolet-visible (UV–vis) 23 2.5.11. X-ray diffraction (XRD) analysis 23 2.5.12. X-ray photoelectron spectroscopy (XPS) 23 PART l Fundamental Research on Back-illuminated Dye-sensitized Solar Cells 25 Chapter 3 Selective conditions for a dye-sensitized solar cell with a flexible 27 TiO2/Ti foil based photoanode 3.1. Experimental 27 3.2. Results and Discussion 27 3.2.1. Transmittance and CV analysis of Pt-CEs 27 3.2.2. Performance of DSSCs with different Pt sputtering periods on CEs 29 3.2.3. EIS of DSSCs with different Pt sputtering periods on CEs 30 3.2.4. Effects of the sintering temperature for TiO2/Ti foil based photoanodes 32 3.2.5. Effects of the thickness of the Ti foil as the substrate of photoanodes 33 3.2.6. Effects of the concentration of I2 in the electrolyte 34 3.3. Summary 37 Chapter 4 Improving the durability of dye-sensitized solar cells through back 38 illumination 4.1. Experimental 38 4.2. Results and Discussion 38 4.2.1. Effects of Pt sputtering periods of CEs 38 4.2.2. Photovoltaic performance and EIS analysis of DSSCs 40 4.2.3. Durability test of dye-sensitized solar cells with back and front illuminations 43 4.3. Summary 48 PART II Approaches for Ti Foil-based Dye-sensitized Solar Cells 49 Chapter 5 Minimization of amorphous metal oxide formation with binder-free 51 TiO2 paste in a low-temperature process 5.1. Experimental 51 5.2. Results and Discussion 51 5.2.1. Binder-free TiO2 paste (BFP) 51 5.2.2. XRD analysis for Ti foils sintered at different temperatures 53 5.2.3. Morphology of TiO2 films prepared with BFP 54 5.2.4. Bending test for Ti/TiO2 photoanode prepared with BFP 54 5.2.5. Photovoltaic performance of DSSCs with BFP or PWB 55 5.2.6. EIS analysisof DSSCs with the photoanodes prepared with BFP or PWB 59 5.2.7. Photovoltaic performance of DSSCs with a Ti foil and an ITO/PEN as the 59 substrate of photoanode prepared with BFP 5.2.8. EDX analysis for the TiO2 film prepared with PWB 62 5.2.9. Electron lifetime for DSSCs with a BFP or a PWB 63 5.2.10. UV-Visible absorption spectra of dyes desorbed from different TiO2 films 63 prepared with BFP or PWB 5.3. Summary 64 Chapter 6 Enhancement of incident light with net-like Pt counter electrode to 67 improve the performance of DSSCs 6.1. Experimental 67 6.2. Results and Discussion 68 6.2.1. Transmittance of net-like Pt counter electrodes 68 6.2.2. Photovoltaic performance of dye-sensitized solar cells with net-like Pt 70 counter electrodes 6.2.3. Cyclic voltammetry analysis of Pt counter electrodes 73 6.2.4. EIS analysis for DSSCs with net-like Pt-CEs 74 6.3. Summary 75 PART III Application of Titanium Dioxide Nanotubes on Ti Foil-based DSSCs 77 Chapter 7 Combination of TiO2 nanotubes/nanoparticles with a layer-by-layer 80 structure 7.1. Experimental 80 7.2. Results and Discussion 80 7.2.1. Surface morphologies of different TNTs 80 7.2.2. Photovoltaic performance of dye-sensitized solar cells with double-layer and 82 single-layer photoanodes. 7.2.3. Electrochemical impedance spectroscopy analyses 88 7.2.4. Analysis of electron lifetime and electron diffusion coefficients 89 7.2.5. Incident photon-to-current efficiency measurements 92 7.3. Summary 93 Chapter 8 Combination of TiO2 nanotubes/nanoparticles with TiO2 nanotubes 94 infiltrated with TiO2 nanoparticles 8.1. Experimrntal 94 8.2. Results and Discussion 95 8.2.1. FT–IR spectra, surface morphologies and XRD analysis of TNT and TNT-TNP 95 8.2.2. Photovoltaic performance of dye-sensitized solar cells with TiO2 nanotubes 101 and those infiltrated with TiO2 nanoparticles on the photoanodes 8.2.3. EIS analysis of DSSCs with TNT and TNT-TNP on the photoanodes 103 8.2.4. Incident photon–to–current conversion efficiency analyses 105 8.2.5. UV-Visible absorption spectra of dyes desorbed from of TNT-TNP films 105 8.3. Summary 107 Chapter 9 Dye-sensitized solar cells with highly ordered Y2O3–coated TiO2 108 nanotubes on flexible photoanodes 9.1. Experimental 108 9.2. Results and Discussion 108 9.2.1. Surface morphologies of different TNTs 108 9.2.2. Photovoltaic performance of dye-sensitized solar cells with titanium oxide 112 nanotube films 9.2.3. EIS analysis of DSSCs with TNTs 114 9.2.4. Surface morphology and composition of yttrium-doped TNTs 115 9.2.5. Photovoltaic performance of DSSCs of yttrium-doped TNTs 120 9.2.6. Incident photon–to–current efficiency of DSSCs of yttrium-doped TNTs 123 9.2.7. Electron lifetime analysis of DSSCs of yttrium-doped TNTs 124 9.3. Summary 124 Chapter 10 Highly efficient counter electrodes with TiO2 nanotube imprints of 127 dye–sensitized solar cells 10.1. Experimental 127 10.2. Results and Discussion 128 10.2.1. Surface morphologies and structures of Ti foil and imprint-Ti foils 128 10.2.2. Active surface area of Pt–sputtered Ti foil and imprinted–Ti foils 131 10.2.3. Photovoltaic performance of DSSCs with the Pt–sputtered Ti foil and 134 imprint-Ti foils as CEs 10.2.4. Incident photon–to–current conversion efficiency analyses 136 10.2.5. Electrocatalytic abilities for triiodine reducing of the Pt–sputtered Ti foils 136 and imprint-Ti foils 10.3. Summary 141 Chapter 11 Suggestions and Prospects 143 11.1 Fundamental Research on Back-illuminated Dye-sensitized Solar Cells 143 11.2 Approaches for Ti Foil-based Dye-sensitized Solar Cells 143 11.3 Application of Titanium Dioxide Nanotubes on Ti Foil-based DSSCs 144 References 146 Appendix 164 | |
| dc.language.iso | en | |
| dc.subject | 背面照光 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | 可撓 | zh_TW |
| dc.subject | 鈦板 | zh_TW |
| dc.subject | 二氧化鈦奈米管 | zh_TW |
| dc.subject | Titanium foil | en |
| dc.subject | Back illumination | en |
| dc.subject | TiO2 nanotubes | en |
| dc.subject | Dye-sensitized solar cells | en |
| dc.subject | Flexible | en |
| dc.title | 以鈦板為可撓基材之染料敏化太陽能電池:光物理和光電化學研究 | zh_TW |
| dc.title | Ti Foil-based Flexible Dye–sensitized Solar Cells: Photophysical and Photoelectrochemical Studies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳春桂(Chun-Guey Wu),王立義(Lee-Yih Wang),諶玉真(Yu-Jane Sheng),廖英志(Ying-Chih Liao) | |
| dc.subject.keyword | 背面照光,染料敏化太陽能電池,可撓,鈦板,二氧化鈦奈米管, | zh_TW |
| dc.subject.keyword | Back illumination,Dye-sensitized solar cells,Flexible,Titanium foil,TiO2 nanotubes, | en |
| dc.relation.page | 176 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
