請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童慶斌 | |
| dc.contributor.author | Shu-Han Wu | en |
| dc.contributor.author | 吳淑涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:44:04Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-24 | |
| dc.identifier.citation | Banaszuk, P. and A. Kamocki (2008). 'Effects of climatic fluctuations and land-use changes on the hydrology of temperate fluviogenous mire.' Ecological Engineering 32(2): 133-146.
Bennis, S. and E. Crobeddu (2007). 'New runoff simulation model for small urban catchments.' Journal of Hydrologic Engineering 12(5): 540-544. Brett, J. R. and T. D. D. Groves (1979). 'Physiological energetics. pp. 279-352. In: W. S. Hoar, D. J. Randall, and J. R. Brett(eds.).' Fish Physiology VIII.(Academic Press, New York.). Cluis, D. (1972). ' Relationship between stream water temperature and ambient air temperature - A simple autoregressive model for mean daily stream water temperature fluctuations.' Nordic Hydrology. 3(2): 65-71. Collins, W. D. (1925). 'Temperature of Water Available for Industrial Use in the United States.' United States Geological Survey Water Supply Paper 520-F. Elliott, J. M. (1991). 'TOLERANCE AND RESISTANCE TO THERMAL-STRESS IN JUVENILE ATLANTIC SALMON, SALMO-SALAR.' Freshwater Biology 25(1): 61-70. Haith, D. A., Ross Mandel and Wu R. S. (1992). Generalized Watershed Loading Functions Version 2.0 User's Manual. Department of Agricultural and Biological Engineering, Cornell University. Haith, D. A. and L. L. Shoemaker (1987). 'GENERALIZED WATERSHED LOADING FUNCTIONS FOR STREAM-FLOW NUTRIENTS.' Water Resources Bulletin 23(3): 471-478. Hamon, W. R. (1961). 'Estimating potential evapotranspiration.' Proceedings of the American Society of Civil Engineers 87: 107-120. Heath, R. C. (1964). 'Seasonal Temperature Fluctuations in Surficial Sand near Albany.' New York, United States Geological Survey Professional Paper 475-D. Ho, H.-C. and J.-C. Gwo (2010). 'Salmo formosanus Jordan & Oshima, 1919 (currently Oncorhynchus formosanus) (Pisces, SALMONIDAE, SALMONINAE): proposed conservation of the specific name.' Bulletin of Zoological Nomenclature 67(Part 4): 300-302. IPCC (2007). 'Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change' [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp International Union for Conservation of Nature and Natural Resources. 'The IUCN Red List of Threatened Species.' from http://www.iucnredlist.org/. Kim, K. S. and C. C. Steven (1997). 'Temperature Model for Highly Transient Shallow Streams.' Journal of Hydraulics Engineering 123(1): 30-40. Lacey, R. W. J. and R. G. Millar (2004). 'Reach scale hydraulic assessment of instream salmonid habitat restoration.' Journal of the American Water Resources Association 40(6): 1631-1644. LeBlanc, R. T., R. D. Brown, et al. (1997). 'Modeling the effects of land use change on the water temperature in unregulated urban streams.' Journal of Environmental Management 49(4): 445-469. Leplod, L. B. (1968). Hydrology for Urban Land Planning: A Guidebook. U.S., Geological Survey Circular 554. Nash, J. E. and J. V. Sutcliffe (1970). 'River flow forecasting through conceptual models part I — A discussion of principles.' Journal of Hydrology 10(3): 282-290. Pickering, N., Stedinger, J., and Haith, D. (1988). 'Weather Input for Nonpoint‐Source Pollution Models.' Journal of Irrigation and Drainage Engineering-asce 114(4): 674–690. Poff, N. L., J. D. Allan, et al. (1997). 'The natural flow regime.' Bioscience 47(11): 769-784. Richter, B. D., J. V. Baumgartner, et al. (1996). 'A method for assessing hydrologic alteration within ecosystems.' Conservation Biology 10(4): 1163-1174. Richter, B. D., J. V. Baumgartner, et al. (1997). 'How much water does a river need?' Freshwater Biology 37(1): 231-249. Rosgen, D. L. (1994). 'A Classification of Natural Rivers.' Catena 22(3): 169-199. Stefan, H. G. a. P. h., E. B. (1993). 'Stream Temperature Estimation from Air Temperature.' Water Resources Bulletin 29(1): 27-44. Suen, J. P. and E. E. Herricks (2009). 'Developing fish community based ecohydrological indicators for water resources management in Taiwan.' Hydrobiologia 625: 223-234. Tennant, D. L. (1976). 'Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources.' Fisheries 1(4): 6-10. Tharme, R. E. (2003). 'A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers.' River Research and Applications 19(5-6): 397-441. The Nature Conservancy (2007). Indicators of Hydrologic Alteration Version 7 User's Manual. Tiang, C. P., Y. C. E. Yang, et al. (2007). 'Modification of a stream temperature model with Beer's law and application to GaoShan Creek in Taiwan.' Ecological Modelling 200(1-2): 217-224. Todd, D. K. (1980). Groundwater Hydrology. New York, Wiley. Tung, C. P. and D. A. Haith (1995). 'Global Warming Effects on New York Streamflows.' Journal of Water Resources Planning and Management 121(2): 216-225. Tung, C. P., T. Y. Lee, et al. (2006). 'Modelling climate-change impacts on stream temperature of Formosan landlocked salmon habitat.' Hydrological Processes 20(7): 1629-1649. USFWS (1980). Habitat evaluation procedures. Ecological Services Manual 102. Washington, DC. USFWS (1981). Standard for the development of habitat suitability index models. Ecological Services Manual 103. Washington,DC. Wehrly, K. E., L. Wang, et al. (2007). 'Field-based estimates of thermal tolerance limits for trout: Incorporating exposure time and temperature fluctuation.' Transactions of the American Fisheries Society 136(2): 365-374. Wilby, R. L., P. G. Whitehead, et al. (2006). 'Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK.' Journal of Hydrology 330(1-2): 204-220. Wood, C. M. and D. G. McDonald (1997). Global warming: implications for freshwater and marine fish. Cambridge University Press. 方力行、陳義雄 (2000). 臺灣櫻花鈎吻鮭之起源與保育之別一個觀點. 櫻花鈎吻鮭保育研究研討會論文集, 行政院農業委員會特有生物研究保育中心: 213. 王西琴、劉昌明、楊志峰 (2002). '生態及環境需水量研究進展與前瞻.' 水科學進展 13(4): 507- 514. 台電達見工程處 (1974). '德基大壩工程竣工報告.' 行政院農業委員會特有生物研究保育中心 (2008). 河川棲地二維模式(River 2D)之應用研究成果報告書., 經濟部水利署水利規劃試驗所. 行政院農業委員會特有生物研究保育中心. (2012). '櫻花鈎吻鮭.' from http://cec.tesri.gov.tw/cec/index.php. 余廷基、賴仲義、吳聲淼 (1987). '櫻花鉤吻鮭繁殖試驗.' 農委會76年生態研究第006號: 41頁. 吳富春、胡通哲、李國昇、李德旺 (1998). 應用棲地模式估算台灣河川之生態流量. 第九屆水利工程研討會: pp.C21-C28. 李宗祐 (2003). 氣候變遷對櫻花鈎吻鮭棲地水溫及族群數量之影響. 碩士論文, 國立台灣大學. 李培芬、李玉琪 (1996). 七家灣溪集水區之遙測監測, 內政部營建署雪霸國家公園管理處. 李登梅、趙浡霖 (1979). 裝備可靠度工程, 五洲出版社. 汪靜明 (1994). 孑遺的國寶─台灣櫻花鉤吻鮭專輯, 內政部營建署雪霸國家公園管理處. 林曜松、曹先紹、張崑雄 (1989). '櫻花鉤吻鮭之生殖生態與行為研究.' 農委會78年生態研究第8號: 18頁. 林曜松、曹先紹、張崑雄、楊平世 (1988). '櫻花鉤吻鮭生態之研究(二)族群分布與環境因子間關係之研究.' 農委會77年生態研究第012號: 93頁. 洪念民 (1996). 氣候變遷對大安溪水資源營運之影響. 碩士論文, 國立台灣大學. 孫元勳、曾建偉、陳宏昌、汪辰寧 (2011). 「武陵地區溪流生態系長期監測暨整合研究成果報告」中「鳥類研究」. 曹先紹、林曜松 (1997). 櫻花鉤吻鮭棲地之調查研究. 林務局86年度溪流環境保育研討會: 20頁. 陳伸安 (2006). 二維水理棲地模式運用於南崁溪生態規劃之研究. 碩士論文, 國立中央大學. 陳宜清、何宗翰 (2004). 建立以棲地評估程序於生態工法之評估準則-應用於台灣野溪治理, 行政院國家科學委員會補助專題研究計畫成果報告. 陳啟慧、夏自強、郝振純、李瓊芳 (2005). '計算生態需水的RVA法及其應用.' 水資源保護 21(3): 4-5. 陳瑋茹 (2008). 修正GWLF模式應用於氣候變遷對七家灣溪流量與泥沙量之影響評估. 碩士論文, 國立台灣大學. 陳瑋茹、李宗祐、童慶斌 (2007). 氣候變遷對七家灣溪輸砂量之影響評估. 96年度農業工程研討會. 彭柏文 (2011). 櫻花鈎吻鮭棲地氣候變遷衝擊評估與季節性預警系統建立. 碩士論文, 國立台灣大學. 曾晴賢 (1999). '櫻花鉤吻鮭族群監測與生態調查(二).' 內政部營建署雪壩國家公園管理處。 曾晴賢、楊正雄 (2002). '七家灣溪流域櫻花鉤吻鮭幼魚歷年族群變動與降雨量的關係.' 國家公園學報 12:2: 111-124. 曾晴賢 (2002). 櫻花鉤吻鮭族群監測調查與生態調查(五), 內政部營建署雪霸國家公園管理處. 游政翰 (2007). 利用物理棲地模式模擬河川復育工法之成效-以七家灣溪為例. 碩士論文, 私立逢甲大學. 童慶斌 (2007). 氣候變遷與環境生態講義, 國立台灣大學生物環境系統工程學系. 童慶斌、李宗祐 (2001). '氣候變遷對七家灣溪流量之影響評估.' 中國農業工程學報 47(1): 65-74. 童慶斌、李明旭、葉欣誠、范正成、陳韻如 (2008). 水庫系統在變遷氣候中之脆弱度評估與支援決策技術發展(II). 行政院國家科學委員會. 童慶斌、洪念民、陳主惠 (1999). '氣候變遷對水資源影響評估與適應策略模擬.' 中國農業工程學報 45(4): 73-90. 童慶斌,連宛渝,何宜昕,戴嘉慧,莊立昕 (2012(已接受)). '建立環流模式推估能力評比之方法.' 農業工程學報. 童慶斌、游保杉、張良正、李明旭、洪念民。2008。強化區域水資源永續利用與因應氣候變遷之調適能力(2/2),經濟部水利署水利規劃試驗所。 楊正雄 (1997). 水溫對櫻花鈎吻鮭族群的影響. 碩士論文, 國立清華大學. 楊昌裔 (2007). 可靠度工程, 新文京開發出版社. 葉明峰、張世倉、林斯正 (2003). '台灣櫻花鉤吻鮭域外放流棲地之評估.' 特有生物研究 5:2: 15-32. 葉昭憲、王永賢 (2010). 「武陵地區生態系長期監測與研究成果報告」中「物理棲地研究」. 葉昭憲、張志豪 (2011). 「武陵地區生態系長期監測與研究成果報告」中「物理棲地研究」. 潘信宏 (2001). 環境變遷對櫻花鉤吻鮭棲地水溫之影響. 碩士論文, 國立台灣大學. 鄧火土 (1959). 台灣高地產陸封鮭魚的形態與生態, 台灣水產試驗所報告. 5: 77- 82. 蕭政宗、吳富春 (2005). 變異範圍法RVA應用於河川流量之規畫. 第二屆生態工程學術研討會: 33-58. 戴永禔 (1992). 台灣櫻花鉤吻鮭之族群生態學研究. 博士論文, 國立台灣大學. 鐘華平、劉恒、耿雷華、徐春曉 (2006). '河道內生態需水估算方法及其評述.' 水科學進展 17(3): 430-434. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65453 | - |
| dc.description.abstract | 近年來,極端天氣對全球所造成之影響為眾所矚目的焦點。由於水資源在臺灣地區的生態、經濟、政策等層面皆扮演極為重要的角色,因此極端天氣對河川生態可能造成的影響也是一大研究方向。臺灣過去與氣候變遷相關之研究成果多著重於平均狀態對河川生態的影響,較少探討極端天氣之影響,然極端事件對生態之衝擊可能更致命。河川的流量與水溫都是影響河川生態之重要因子,尤其對臺灣櫻花鈎吻鮭這種對棲地環境變化相當敏感的魚類而言,河川流量及水溫的變動對於牠們的棲地皆有著舉足輕重之影響,藉由分析這些因子,將可反映氣候變遷下棲地之脆弱度。
本研究以臺灣櫻花鈎吻鮭棲地─七家灣溪為研究區域,根據不同溫室氣體排放情境所推估之未來氣候資料來設定氣候變遷情境,模擬未來在氣候變遷影響下河川連續七日之流量和水溫變動情形,以探討氣候變遷對流量極端化之影響,除此之外,亦將未來水溫資料結合可靠度的概念以描述七家灣溪之脆弱度及回復力,探討氣候變遷影響下極端天氣造成之流量極端化與水溫升高對臺灣櫻花鈎吻鮭生存環境所帶來的衝擊。 由本研究結果顯示,未來七家灣溪連續七日流量在氣候變遷影響之下,高流量增加,低流量減少,流量變化趨於極端化。根據水溫模擬結果來看冬季時水溫將受到較大的衝擊,且未來高溫事件之頻率與最大延時皆增加,高溫事件之強度與基期相比亦有增加趨勢。無論就高溫事件之發生頻率、延時或強度來看皆說明未來棲地將受到不小的衝擊。極端事件可能造成臺灣櫻花鈎吻鮭生存環境之一大衝擊,進而使魚群生存受到威脅。 | zh_TW |
| dc.description.abstract | In recent years, the impacts of climate change have been the focus of world attention. As a result that water resource palys an important role in ecological, economic, and policy levels in Taiwan, the possible impact of extreme weather on river ecology is also a major research issue. Climate change may cause more climate variability and more frequent extreme hydrological events. In the past, lots of studies which related to climate change emphasis the impact of the average state of the river ecosystem, but less to the extreme weather in Taiwan. However, extreme events impacting on the ecological may be more deadly. Streamflow and water temperature play important roles in river ecosystem, which influences not only aquatic biodiversity but also the area of habitat. Especially for the Formosan Landlocked Salmon which is sensitive to habitat environment, they may be significantly influenced by greater variation of streamflow and higher water temperature due to climate change. As a result, it will be able to reflect the vulnerability of the habitat by evaluating extreme streamflow and water temperature under climate change.
The habit of Formosan Landlocked Salmon, ChiChiaWan creek, is the main study area. A set of ecohydrological indicators is used to estimate the vulnerability of Formosan Landlocked Salmon’s habitat under climate change. The future climate scenarios are derived from several GCMs. Then, a hydrological model is used to simulate the extreme consecutive 7-day streamflow under different climatic conditions and a water temperature model is used to further simulate the extreme water temperature. In addition, this study combined water temperature data with the concept of vulnerability and reslilence that water temperature may exceed the threshold temperature of survival, and explored the impact on the habitat which caused by extreme streamflow and water temperature under the influence of extreme weather. According to the results of this study, streamflows will become much more extremalization with the increasing consecutive 7-day high flow and decreasing consecutive 7-day low flow under different climate scenarios. The results also show water temperature may exceed the threshold temperature of survival under some GCMs’ scenarios especially in winter. The frequency of high temperature event and maximum duration are increased, while the intensity of high-temperature events also trends to increase compared with the base period. No matter the frequency, duration, or strength of high temperature events, the results show that extreme weather may cause great impact and thus threaten the habitat of Formosan Landlocked Salmon. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:44:04Z (GMT). No. of bitstreams: 1 ntu-101-R99622005-1.pdf: 169294932 bytes, checksum: 5e78c636e95d69f94c512dd25bec64b1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、緒論 1 1.1 研究緣起 1 1.2 研究背景 2 1.3 研究動機 4 1.4 研究架構 6 第二章、文獻回顧 7 2.1 臺灣櫻花鈎吻鮭棲地 7 2.2 氣候變遷對流量之影響 9 2.3 氣候變遷對水溫之影響 10 2.4 河川棲地健康度評估方法 11 2.4.1 水文法 12 2.4.2 水理法 15 2.4.3 生態法 15 2.5 小結 19 第三章、研究方法 22 3.1 研究架構 22 3.1.1 氣候變遷情境設定 23 3.1.2 全球環流模式 24 3.1.3 溫室氣體排放情境 28 3.1.4 降尺度 31 3.2 氣象資料合成模式 32 3.3 GWLF流量模式 33 3.4 水溫模式 41 3.5 水文變動指標 47 3.6 棲地脆弱度及回復力評估方法 48 第四章、氣候變遷對七家灣溪的影響 51 4.1 研究區域 51 4.2 氣候變遷情境設定 53 4.2.1 全球環流模式之選用 53 4.2.2 溫室氣體排放情境之選用 56 4.3 氣候變遷對流量的影響 57 4.4 氣候變遷對水溫的影響 66 4.5 棲地脆弱度與回復力評估 79 4.6 小結 83 第五章、結論與建議 84 5.1 結論 84 5.2 建議 86 參考文獻 88 附錄一、各GCMs之低流量及高流量累積機率曲線圖 96 附錄二 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生態水文指標 | zh_TW |
| dc.subject | 極端天氣 | zh_TW |
| dc.subject | 極端流量 | zh_TW |
| dc.subject | 水溫 | zh_TW |
| dc.subject | 脆弱度 | zh_TW |
| dc.subject | 回復力 | zh_TW |
| dc.subject | Streamflow | en |
| dc.subject | Global Warming | en |
| dc.subject | Water Temperature | en |
| dc.subject | Reslilence | en |
| dc.subject | Vulnerability | en |
| dc.subject | Ecohydrological Indicators | en |
| dc.title | 應用極端流量及水溫評估氣候變遷對櫻花鈎吻鮭棲地之衝擊 | zh_TW |
| dc.title | Climate Change Impact Assessment on Habitat of Formosan Landlocked Salmon by Evaluating Extreme Streamflow and Water Temperature | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林裕彬,陳彥璋,李明旭 | |
| dc.subject.keyword | 生態水文指標,極端天氣,極端流量,水溫,脆弱度,回復力, | zh_TW |
| dc.subject.keyword | Ecohydrological Indicators,Water Temperature,Streamflow,Global Warming,Vulnerability,Reslilence, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-24 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 165.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
