請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65387
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
dc.contributor.author | Ping-Shiang Wang | en |
dc.contributor.author | 王品翔 | zh_TW |
dc.date.accessioned | 2021-06-16T23:40:02Z | - |
dc.date.available | 2012-07-27 | |
dc.date.copyright | 2012-07-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-25 | |
dc.identifier.citation | 宋紹良,2010:上層海洋熱力結構對颱風強度變化之影響-海氣耦合模式實驗研
究,國立臺灣大氣科學所碩士論文,88p Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Mon. Wea. Rev., 128, 917–946. Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys., 65, 233–240. Black, P. G., 1983: Ocean temperature change induced by tropical cyclones. Ph.D. dissertation, Dept. of Meteorology, Pennsylvania State University, 278 pp. Bleck, R., 2002: An oceanic general circulation framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling, 4, 55-88. Bryan, G. H., and R. Rotunno, 2009: The influence of near-surface, high-entropy air in hurricane eyes on maximum hurricane intensity. J. Atmos. Sci., 66, 148 158. Chan, J. C. L., and W. M. Gray, 1982: Tropical cyclone movement and surrounding flow relationships, Mon. Wea. Rev., 110,1354-1374. Chassignet, E. P., L. T. Smith, G. R. Halliwell, and R. Bleck, 2003: North Atlantic simulation with the HYbrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference density, and thermobaricity. J. Phys. Oceanogr., 33, 2504-2526. ——, H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. Sys., 65, 60-83. Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-hurricane program and the next-generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311–317. DeMaria, M., and J. Kaplan, 1994: Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 1324–1334. Elliott, B.A., 1982: Anticyclonic rings in the Gulf of Mexico. Journal of Physical Oceanography, 12, 1292-1309. Elsberry R. L. and P. A. Harr, 2008: Tropical cyclone structure (TCS08) field experiment science basis, observational platforms, and strategy. Asia-Pacific J. Atmos. Sci., 44, 3, 209–231. Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585–604. ——, 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155. ——, 1991: The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179–196. ——, 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976. ——, 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci.,54, 1014–1026. ——, 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665–669. ——, 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152. ——, C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843–858. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162. ______, 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343–367. Gallacher, P. C., R. Rotunno, and K. A. Emanuel, 1989: Tropical cyclogenesis in a coupled ocean-atmosphere model. Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 121–122. Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS, Trans. Amer. Geophys. Union, 84, 573–580. Halliwell, Jr., G. R., 2004: Evaluation of vertical coordinate and vertical mixing algorithms in the hybrid-coordinate ocean model (HYCOM). Ocean Modelling, 7, 285-322. Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541. Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365. Hwang, C., C. R. Wu, and R. Kao, 2004: TOPEX/Poseidon observations of mesoscale eddies over the subtropical countercurrent: Kinematic characteristics of an anticyclonic eddy and of a cyclonic eddy. J. Geophy. Res., 109, C08013, doi:10.1029/2003JC002026. Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pum, 2005: The interaction of supertyphoon Maemi with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649. ——, ——, I.-F. Pun, and D.-S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon's intensification. Mon. Wea. Rev., 136, 3288-3306. ——, C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, doi:10.1029/2008GL035815. McPhaden, M. J., G. R. Foltz, T. Lee, V. S. N. Murty, M. Ravichandran, G. A. Vecchi, J. Vialard, J. D. Wiggert, and L. Yu, 2009: Ocean-atmosphere interactions during cyclone Nargis. EOS, Trans. Amer. Geophys. Union, 90, 53–60. Meng Z., and F. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon.Wea. Rev., 135, 1403–1423. Palmen, E., 1948: On the formation and structure of tropical cyclones, Geophysics, 3, 26 – 38. Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371. Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153– 175. ——, R. A. Weller, and R. Pinkel 1986: Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–8427. ——, T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260. Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 1670-1685. Roemmich, D., and J. Gilson, 2001: Eddy transport of heat and thermocline waters in the north pacific: a key to interannual/decadal climate variability? J. Phys. Oceanogr., 31, 675-687. Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561. Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642-651. Scharroo, R., W. H. F. Smith, and J. L. Lillibridge, 2005: Satellite Altimetry and the intensification of Hurricane Katrina. EOS, Trans. Amer. Geophys. Union, 86, 366–367. Shay, L. K., G. I. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383. ——, and J. Brewster. 2010: Eastern Pacific oceanic heat content estimation for hurricane forecasting. Mon. Wea. Rev, 138, 2110-2131. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note, NCAR/TN-468+STR, 88 pp. Uhlhorn, E. W., P. G. Black, J. L. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 3070–3085. Wang, Y., and C.-C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes – a review. Meteorol. Atmos. Phys., 87, 257–278. ——, and J. Xu, 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97– 116. Walker, N., S. Myint, A. Babin, and A. Haag, 2003: Advances in satellite radiometry for the surveillance of surface temperatures, ocean eddies and upwelling processes in the Gulf of Mexico using GOES-8 measurements during summer. Geophys. Res. Lett.,30, 1854, doi:10.1029/2003GL017555. Weissmann M., F. Harnisch, C.-C. Wu, P.-H. Lin, Y. Ohta, K. Yamashita, Y.-K. Kim, E.-H. Jeon, T. Nakazawa, and S. Aberson, 2011: The influence of dropsondes on typhoon track and mid-latitude forecasts. Mon. Wea. Rev., 139, 908-920. (SCI) Willoughby, H. E., R. W. R. Darling, and M. E. Rahn, 2006: Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles. Mon. Wea. Rev., 134, 1102–1120. Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578. ——,G.-Y. Lien, J.-H. Chen, and F. Zhang, 2010: Assimilation of tropical cyclone track and structure based on the Ensemble Kalman Filter (EnKF). J. Atmos. Sci., 67, 3806-3822. Yablonsky, R. M., and I. Ginis, 2009: Limitation of one-dimensional ocean models for coupled hurricane-ocean model forecasts. Mon. Wea. Rev., 137, 4410– 4419. ——, ——, 2009a: Impact of a warm ocean eddy’s circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Monthly Weather Review, 137. Zavala-Hidalgo, J., S. L., Morey, and J. J. O’Brien, 2003a. Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr., 33, 623–629. Zhang, F., Z. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722–736. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65387 | - |
dc.description.abstract | 本實驗利用一維海氣耦合模式,進行颱風凡那比颱風(2010)生成發展中加入冷渦及暖渦的實驗;在模擬之前利用系集卡爾曼濾波器(EnKF)進行資料同化,在同化期間並加入了ITOP實驗的C-130飛機觀測資料,以能得到更接近觀測的颱風強度及結構資料來進行模擬,以便進一步探討在加入海洋渦漩並將海洋渦漩的混合層厚度、水平半徑大小以及與颱風路徑的相對位置等變因,對於颱風強度以及上層海洋回饋機制的影響進行探討,以及定量分析這些敏感性實驗中渦漩對於颱風強度的影響程度,主要的研究發現簡述如下:
透過定量計算分析海洋渦漩對颱風強度影響的程度,會和渦漩本身的水平大小成正比;而在混合層厚度的變化上,暖渦厚度越厚,冷渦厚度越薄,對於颱風強度的影響也越明顯,其中暖渦為正貢獻,冷渦為負貢獻。比較渦漩對颱風強度造成的直接影響與颱風通過渦漩期間的總強度變化的比例,發現越厚越大的暖渦以及越薄越大的冷渦對於風強度直接影響的能力就越強;而當颱風通過越小越薄的暖渦及越小越厚的冷渦時,颱風強度的影響便不再受這些渦漩明顯作用;而對海洋上層反應過程的變化,暖渦的厚度越厚水平尺度越大,抑制海洋負回饋機制的能力越佳,而冷渦的厚度越薄,越能加強海洋負回饋機制;而跟暖渦不同的是,冷渦實驗中將冷渦半徑改變對海洋負回饋機制的影響則不明顯。而路徑兩側的海洋渦漩對於颱風強度的貢獻作用在我們的定量計算分析上的結果是相當不明顯的,而比較左側與右側的冷渦與暖渦,唯有位於右側海溫下降敏感區域的海洋渦漩會對於海溫下降的機制產生影響,右側暖渦抑制海溫下降的能力隨著半徑增加厚度加大而增強,冷渦則是隨著厚度變薄而加大海溫下降的區域面積,即有助於增強負回饋機制,但因颱風僅經過這些渦漩的邊緣,渦漩影響時間亦較短,因此這些右側渦漩對海洋負回饋的機制的影響,並未反應在颱風強度上。 針對穿越暖渦的颱風而言,在離開暖渦後因更強的強度可引發較無暖渦狀態的海洋場更顯著的海洋冷卻效應,會進一步反過來削弱自身原先受暖渦正貢獻增加的強度,即可說是一種由暖渦間接導致的海洋負回饋機制;而在暖渦的厚度與抑制海溫冷卻的能力之間的關係,在颱風通過暖渦所在海域後增強,將會引發更強的洋流流入暖渦內,對於較厚的暖渦,此更強的洋流所引發的流切逸入作用導致的海溫下降作用仍可被抑制住,對於較薄的暖渦,則會無法抑制這種較原先颱風經過暖渦時,尚未增強時所驅動的洋流場更強的洋流所引發的更強流切逸入作用,導致海溫下降,且下降的程度比起無暖渦的實驗更大。 而目前我們所用的一維海洋模式無法反應出海洋內的平流過程,因此在颱風引發的海洋冷卻機制上有低估的可能,加上若是進行海洋渦漩敏感性實驗,也可能因無法考慮海洋渦漩的流場性質,而使得模擬出的海洋負回饋機制結果可能和真實情況有所差異,故後續研究希望能利用具有完整物理過程的三維海洋模式進行模擬,以期能更了解接近真實情況下,颱風與海洋交互作用的物理機制與過程。 | zh_TW |
dc.description.abstract | This study uses a 1-D atmosphere-ocean coupled model to simulate Typhoon Fanapi (2010) with ocean warm and cold eddies. In order to have a reasonable initial TC structure and intensity, a new method of TC initialization based on ensemble Kalman filter (EnKF) is applied before conducting the coupled model simulation. And here we add the aircraft observation data during ITOP in the TC initialization period. With the improved initial TC structure and intensity, we change conditions of ocean eddies such as eddies’ mixed layer depth, horizontal radius and location relative to the TC track. In our research, the eddy feedback factor is then used to assess how the TC intensity is influenced by ocean eddies, including upper ocean response process.
By calculating the TC intensity influenced by ocean eddies, we find that for warm eddies, if the mixed layer depth is deeper and the horizontal radius is larger, the potential to increase the TC intensity would be stronger, and the ability to restrain SST cooling effect would be stronger, and vice versa for cold eddies. If the eddies are in the right hand side of the TC track, the SST cooling effect would be changed, but if the eddies are in the left hand side of the TC track, the SST cooling effect remains unchanged. Besides, eddies in both the right hand side and left hand side do not significantly affect TC intensity. When the TC passes by the center of warm eddies, the SST cooling effect outside warm eddies would be increased because the TC is more powerful in driveingocean current faster, mixing more cold water, and thus reducingSST. This effect would also decrease TC intensity when TC passes by warm eddies. If the faster current flows into the inner core of warm eddies, the thicker eddies can restrain the mixing effect so that the SST cooling effect would be reduced. While the eddy is thinner, it can’t restrain more powerful shear-driven entrainment. Therefore, the SST cooling effect in the location of thinner warm eddies will be more obvious. The 1-D ocean-coupled model we use in this study neglects the SST cooling effect by advection. In our future works, more complicated (3D) ocean models would be used to simulate the feedback effect from ocean. We can compare the results of 3D and 1D models to quantitatively evaluate the impact of advection (non-local effect) on upper ocean feedback and the TC intensity change. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:40:02Z (GMT). No. of bitstreams: 1 ntu-101-R99229018-1.pdf: 6748163 bytes, checksum: 2d60b4e73c7b07782e2af2d9d9a4a17c (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 ............................................................................................................................. I
摘要 ............................................................................................................................ II Abstract ...................................................................................................................... IV 目錄 ........................................................................................................................... VI 圖目錄 .................................................................................................................... VIII 表目錄 ..................................................................................................................... XV 第一章 前言 ......................................................................................................... 1 1.1 文獻回顧 .................................................................................................. 1 1.1.1 海洋條件與熱帶氣旋生成發展 ....................................................... 2 1.1.2 海洋負回饋機制 …......................................................................... 4 1.1.3 海洋渦漩與熱帶氣旋交互作用 ....................................................... 6 1.1.4 海洋回饋作用定量分析探討 ........................................................... 9 1.2 研究動機與目的 .................................................................................. 12 第二章 研究工具與實驗方法 ........................................................................... 14 2.1 大氣海洋耦合模式介紹 ...................................................................... 14 2.1.1 大氣模式介紹 ................................................................................. 14 2.1.2 海洋模式介紹 ............................................................................. 15 2.2 模擬個案-凡那比颱風介紹 ...............................................................…. 16 2.3 颱風初始化目的方法 ................................................................................ 17 2.3.1 以EnKF進行凡那比颱風初始化 ................................................... 19 2.3.2 凡那比颱風初始化結果 ………………………........................... 20 2.4 模式設定 .................................................................................................... 20 2.5 實驗設計 .................................................................................................... 21 第三章 實驗結果與討論 ......................................................................................... 24 3.1 控制實驗(CTRL)結果與討論 ................................................................... 24 3.2 暖渦實驗結果 ..……………….................................................................. 27 3.2.1 半徑204km暖渦實驗結果討論 ......……...…………………… 27 3.2.1.1 L100組暖渦實驗結果 ...…………………………….….... 27 3.2.1.2 L80組暖渦實驗結果 ……………………………………. 31 3.2.1.3 L60組暖渦結果 …………………………………………. 34 3.2.2 半徑156km暖渦實驗結果與討論 ......………………………. 40 3.2.2.1 S100組暖渦實驗結果 ..…………………………………… 40 3.2.2.2 S80組暖渦實驗結果 …..…………………………….……. 43 3.2.2.3 S60組暖渦實驗結果 ..……………………………….……. 46 3.3 暖渦實驗綜合結果討論與定量分析 ……..…………........................... 51 3.4 冷渦實驗結果 ........................................................................................ 55 3.4.1 半徑204km冷渦實驗結果與討論 ..…..…..………..…...……. 55 3.4.1.1 L10組冷渦實驗結果 ..….………………………………… 55 3.4.1.2 L20組冷渦實驗結果 ..…………………………...……..… 58 3.4.1.3 L30組冷渦實驗結果 …..……………………….....……… 60 3.4.2 半徑156KM冷渦實驗結果與討論 ....………...……...……..... 62 3.4.2.1 S10組冷渦實驗結果 ………………………...….……….. 63 3.4.2.2 S20組冷渦實驗結果 …………………………....……….. 65 3.4.2.3 S30組冷渦實驗結果 ………………………...….……….. 68 3.5 冷渦實驗綜合結果討論與定量分析..….......................……….….….... 70 第四章 結論與未來展望 …………………………………..................................... 74 4.1 結論 .……..……………………...……………..….................................... 74 4.2 未來展望 ..……………………….............................................................. 76 參考文獻 ................................................................................................................... 77 附圖 ........................................................................................................................... 83 附表 ......................................................................................................................... 168 | |
dc.language.iso | zh-TW | |
dc.title | 凡那比颱風之海氣交互作用模擬分析
-海洋冷暖渦影響探討 | zh_TW |
dc.title | Typhoon-Ocean Interaction in Typhoon FANAPI (2010) - Influence of Ocean Warm and Cold Eddies. | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林依依(I-I Lin),林博雄(Po-Hsiung Lin) | |
dc.subject.keyword | 海洋渦漩,颱風強度,海洋冷卻效應,海氣耦合模式,系集卡爾曼濾波器, | zh_TW |
dc.subject.keyword | ocean eddies,tropical cyclone intensity,upper ocean SST cooling effect,atmosphere-ocean coupled model,ensemble Kalman filter., | en |
dc.relation.page | 171 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 6.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。