請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65384完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳 | |
| dc.contributor.author | Min-Ping Lin | en |
| dc.contributor.author | 林旻平 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:39:52Z | - |
| dc.date.available | 2017-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | [1]M. Fleischmann, P. J. Hendra and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, Vol. 26, 163-166, 1974.
[2]D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman spectroelectrochemistry part.1 heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, Journal of Electroanalytical Chemistry, Vol. 84, 1-20, 1977 [3]M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode”, Journal of the American Chemical Society, Vol. 99, 5215-5217, 1977. [4]K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Physical Review Letters, Vol. 78, 1667-1670, 1997. [5]H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”, Physical Review Letters, Vol. 83, 4357-4360, 1999. [6]黃國柱, 辛玉麟和賴俊邑, “奈米材料於生醫檢驗之應用”, Chemistry, Vol. 64, 295-304, 2006. [7]D. A. Long, “Raman spectroscopy”, McGraw-Hill, 1977. [8]R. A. Tripp, R. A. Dluhy, and Y. Zhao, “Novel nanostructure for SERS biosensing”, Nano Today, Vol. 3, 31-37, 2008. [9]A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, “Raman spectroscopy”, Analytical Chemistry, Vol. 70, 341-362, 1998. [10]M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective”, Journal of Raman Spectroscopy, Vol. 36, 485-496, 2005. [11]M. A. D. Jesus, K. S. Giesfeldt, J. M. Oran, N. A. A. Hatab, N. V. Lavrik, and M. J. Sepaniak, “Nanofabrication of densely packed metal–polymer arrays for surface-enhanced Raman spectrometry”, Applied Spectroscopy, Vol. 59, 1501-1508, 2005. [12]M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 38, 277-282, 2007. [13]L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J. L. Bijeon, P. M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement”, Chemical Physics Letters, Vol. 422, 303-307, 2006. [14]J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza, and F. F. Abraham, “Size effects on the mechanical behavior of nanoporous Au”, Nano Letters, Vol. 6, 2379-2382, 2006. [15]Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film”, The Journal of Physical Chemistry C, Vol. 112, 15098-15101, 2008. [16]X. Zhou, Q. Wei, K. Sun, and L. Wang, “Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition”, Applied Physics Letters, Vol. 94, 133107-133103, 2009. [17]G. Keresztury, “Raman spectroscopy: theory, handbook of vibrational spectroscopy”, John Wiley & Sons, Vol. 1, 71, 2001. [18]汪建民, “材料分析”, 中國材料科學學會, 73-82, 1998. [19]E. A. Carter, K. K. Tam, R. S. Armstrong and P. A. Lay, “Vibrational spectroscopic mapping and imaging of tissues and cells”, Biophysical Reviews, Vol. 1, 95-103, 2009. [20]J. R. Ferraro and K. Nakamoto, “Introduction Raman spectroscopy,” Academic Press, 1-25, 1994. [21]H. M. Fan, X. F. Fan, Z. H. Ni, Z. X. Shen, Y. P. Feng and B. S. Zou,“Orientation-dependent Raman spectroscopy of single wurtzite CdS nanowires,” The Journal of Physical Chemistry C, Vol. 112, 1865-1870, 2008 [22]E. J. Liang and W. Kiefer, “Chemical effect of SERS with near-infrared excitation,” Journal of Raman Spectroscopy, Vol. 27, 879-885, 1996. [23]W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, Vol. 424, 824-830, 2003. [24]A. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review Physical Chemistry, Vol. 49, 569–638, 1998. [25]M. Moskovits, D. P. DiLella and K. J. Maynard, “Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation,” Langmuir, Vol. 4, 67–76, 1988. [26]P. Chu and D. L. Mills, “Erratum: Electromagnetic response of nanosphere pairs: Collective plasmon resonances, enhanced fields, and laser-induced forces,” Physical Review B, Vol. 77, 045416, 2008. [27]A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” Journal of Raman Spectroscopy, Vol. 36, 497–509, 2005. [28]A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chemical Society Reviews, 27, 241–250, 1998. [29]K. Kneipp, H. Kneipp, L. Itzkan, R. R. Dasari and M. S. Feld, “Ultrasensitive chemical analysis by Raman apectroscopy,” Chemical. Reviews, 99, 2957–2976, 1999. [30]M. S. Dresselhaus, G. Dresselhaus and P. Avouris, “Carbon nanotubes: Synthesis, structure, properties, and applications,” Springer, 2001. [31]S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus and M. Tinkham, “Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes,” Physical Review Letters, 93, 167401, 2004. [32]H. Ko, C. Jiang, H. Shulha and V. V. Tsukruk, “Carbon nanotube arrays encapsulated into freely suspended flexible films,” Chemistry of Materials, 17, 2490–2493, 2005. [33]B. Nikoobakht, J. Wang and M. A. El-Sayed, ” Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chemical Physics Letters, 366, 17–23, 2002. [34]D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino and W. E. Moerne, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” The Journal of Chemical Physics, 124, 061101, 2006. [35]L. L. Zhao, L. Jensen and G. C. Schatz, “Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters,”Nano Letters, 6, 1229–1234, 2006. [36]J.F. Li, Y.F. Huang, Y. Ding, Z.L. Yang, S.B. Li, X.S. Zhou, F.R. Fan, W. Zhang, Z.Y. Zhou, D.Y. Wu, B. Ren, Z.L. Wang and Z.Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy”, Vol. 464, 392-395, 2010. [37]A.E. Rider, S. Kumar, S.A. Furman and K. Ostrikov, “Self-organized Au nanoarrays on vertical graphenes: an advanced three-dimensional sensing platform”, Vol. 48, 2659-2661, 2012. [38]X. Qian, X.H. Peng, D.O. Ansari, Y.G. Qiqin, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang and S, Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags”, Nature Biotechnology, Vol. 26, 83-90, 2008. [39]T.Y. Liu, K.T. Tsai, H.H. Wang, Y. Chen, Y.H. Chen, Y.C. Chao, H.H. Chang, C.H. Lin, J.K. Wang and Y.L. Wang, “Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood”, Nature Communication, Vol. 2, 2011. [40]M.C. Wu, Y. Chou, C.M. Chuang, C.P. Hsu, J.F. Lin, Y.F. Chen and W.F. Su, “High-Sensitivity Raman scattering substrate based on Au/La0.7Sr0.3MnO3 periodic arrays”, Applied Materials & Interfaces, Vol. 1, 2484-2490, 2009. [41]J.H. Li, S.W. Chen, Y. Chou, M.C. Wu, C.H. Hsueh and W.F. Su, “Effects of gold film morphology on surface plasmon resonance using periodic P3HT:PMMA/Au nanostructures on silicon substrate for surface-enhanced Raman scattering”, The Journal of Physical Chemistry, Vol. 115, 24045-24053, 2011. [42]N.A. Hatab, C.H. Hsueh, A.L. Gaddis, S.T. Retterer, J.H. Li, G. Eres, Z. Zhang and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy”, Nano Letters, Vol. 10, 4952-4955, 2010. [43]T. Norbygaard and R. W. Berg, “Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of fourier transform Raman spectroscopy”, Society for Applied Spectroscopy, Vol. 58, 410-413, 2004. [44]Y. Yang, Z.Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou and M. Nogami, “Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics”, Nanoscale, Vol. 4, 2663-2669, 2012. [45]吳民耀, 劉威志, “表面電漿子理論與模擬”, 物理雙月刊, Vol. 28, 486-496, 2006. [46]邱國斌,蔡定平, “金屬表面電漿簡介”, 物理雙月刊, Vol. 28, 472-485, 2006. [47]H. Ko, S. Singamaneni and V.V. Tsukruk, “Nanostructured surfaces and assemblies as SERS media”, Small, Vol. 4, 1576-1599, 2008. [48]D. Skoog, F. Holler and S.Crouch, “Principle of instrument analysis sixth edition,” Thomson Brooks/Cole, 2007 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65384 | - |
| dc.description.abstract | 近幾年食品汙染頻傳,從2008年的三聚氰胺事件到2011年的塑化劑事件,無不讓民眾陷入人心惶惶的食品安全黑暗期,因此快速且準確的檢測分析方式是必要的。引入表面增強拉曼散射之技術,利用其量測快速、靈敏度高之優點來開發適用於廢水污染監測、毒品檢驗、殘留化學物檢測分析等之基材為當前熱門的研究方向。
本論文的構想是以製程快速、成本低廉的方式來製作具有表面增強拉曼散射效應之基材。本研究利用旋鍍二氧化矽次微米球的方式,製作出大面積的週期性結構,並採用熱蒸鍍方法來製備覆蓋於結構表面的金屬銀薄膜。透過製程參數的調控,使基材本身的光學性質產生變化,進而增強表面電漿共振效應。同時也研究待測物其吸收光譜與拉曼量測激發波長的相關性,得出待測物吸收波長與拉曼量測激發波長位置越相近,則其拉曼訊號增顯效果越佳。 利用本研究所製備之表面增強拉曼散射效應基材用來檢測有機染料、塑化劑與愷他命等有機化合物。在有機染料方面,其拉曼散射訊號最高可增強40,000倍。在塑化劑方面,除了其增顯因子可達21,000倍外,同時以簡單萃取分離的方法,快速有效將干擾物去除,得到目標分析物拉曼圖譜,其偵測極限可達40 ppm。而我們也針對愷他命在尿液中的檢測分析,經由萃取分離的方法,其偵測極限可達20 ppm,相較目前市售的愷他命檢測試片的100 ppm偵測極限,本研究出色許多。 本研究所開發之表面增強拉曼散射基材的靈敏性可超越目前市售的檢測片,且由於其製作成本低廉,準確性高與快速量測的優點,預計可大量生產並商品化,應用於各項汙染監測,也可運用至毒品檢測,替人民的治安作進一步的把關。 | zh_TW |
| dc.description.abstract | Numerous food safety incidents take place in recent years. For example, the 2008 Chinese milk scandal of which adulterated melamine was found in infant milk powder. Additionally, plasticizer (such as, bis(2-ethylhexyl) phthalate(DEHP), Benzyl butyl phthalate(BBP), dibutyl phthalate(DBP)) was used to replace palm oil in foods and drinks as a clouding agent in 2011, Taiwan. Therefore, to quickly and accurately characterize food or ingredients is extremely important for preventing damage from toxic substances. To approach this goal, there is a novel methodology of rapid detection by adopting surface-enhanced Raman scattering (SERS) effect on highly sensitive substrate. It will be powerful in detecting drugs and chemicals.
In this study, we develop a simple and low cost solution process to fabricate a novel Ag coated monodispersive silica colloid monolayer substrate to enhance Raman scattering signals of organic dyes, plasticizer and ketamine. By tuning the process parameters, a significant enhancement of Raman scattering by surface plasmon was observed. We also found that there is a relationship between the absorption wavelength of chemicals and the Raman excitation wavelength. The enhancement factor of Raman signal would be higher since the overlapped wavelength. The enhancement factor of organic dyes on our SERS substrate is 40,000 times. For the plasticizers, the enhancement factor of plasticizers on our SERS substrate is 21,000 times. A simple extraction method was used to remove the interference efficiently, leading to the lowest detecting limits 40 ppm and 20 ppm of plasticizer and ketamine respectively. Consequently, the developed SERS method with high sensitivity, low cost and quick detection in this study will be beneficial for the design and fabrication of functional devices and sensors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:39:52Z (GMT). No. of bitstreams: 1 ntu-101-R99549030-1.pdf: 4806567 bytes, checksum: 1191e3dc80386b6f9ff8be4a488ef89b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 1.1 研究背景 2 1.2 研究動機 3 第二章 基礎理論與文獻回顧 5 2.1 分子振動光譜 5 2.2 拉曼光譜 7 2.2.1 拉曼散射基本原理 7 2.2.2 共振拉曼散射(Resonance Raman Scattering) 10 2.3 表面增強拉曼散射 11 2.3.1 表面電漿(Surface Plasmon) 11 2.3.2 電磁增強效應(Electromagnetic Enhancement) 13 2.3.3 化學增強效應(Chemical Enhancement) 13 2.4 SERS基材目前的開發情況 14 2.5 有機染料的介紹 20 2.6 塑化劑的簡介 22 2.7 愷他命(Ketamine)簡介 22 第三章 實驗設備與方法 24 3.1 實驗藥品 24 3.2 使用儀器 25 3.3 SERS基板製備 26 3.3.1 二氧化矽次微米球之合成 26 3.3.2 單層二氧化矽次微米球自組裝 26 3.3.3 熱蒸鍍金屬薄膜 26 3.4 SERS基材之光學量測 27 3.4.1 顯微測量膜厚系統 27 3.4.2 共軛焦拉曼光學顯微鏡 29 3.5 SERS基材對有機染料分析製備 31 3.6 SERS基材對塑化劑分析製備 32 3.7 SERS基材對愷他命(Ketamine)分析製備 33 第四章 結果與討論 34 4.1 SERS基材表面型態探討 35 4.1.1 SEM圖譜鑑定與分析 35 4.1.2 AFM圖譜鑑定與分析 40 4.1.3 基本光學探討 43 4.2 SERS基材對SERS效應之探討 46 4.2.1 有機染料基本性質 46 4.2.2 有機染料對SERS效應之增顯因子評估與分析 47 4.2.3 粒徑大小與金屬薄膜對SERS效應之分析 49 4.3 塑化劑之分析探討 52 4.3.1 塑化劑對SERS效應之增顯因子評估與定量分析 52 4.3.2 含塑化劑之飲品分析檢測 56 4.4 愷他命之分析探討 59 第五章 結論 62 第六章 建議事項 63 第七章 參考文獻 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | 有機染料 | zh_TW |
| dc.subject | 塑化劑 | zh_TW |
| dc.subject | 拉曼散射光譜 | zh_TW |
| dc.subject | 表面電漿共振 | zh_TW |
| dc.subject | 愷他命 | zh_TW |
| dc.subject | ketamine | en |
| dc.subject | Raman scattering spectrum | en |
| dc.subject | self-assembly | en |
| dc.subject | organic dyes | en |
| dc.subject | plasticizers | en |
| dc.subject | surface plasmon resonance | en |
| dc.title | 表面電漿共振增益型化學感測器 | zh_TW |
| dc.title | Chemical Sensor Based on Surface Plasmon Resonance | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳學禮,薛景中,吳明忠,樊汝麗 | |
| dc.subject.keyword | 表面電漿共振,拉曼散射光譜,自組裝,有機染料,塑化劑,愷他命, | zh_TW |
| dc.subject.keyword | surface plasmon resonance,Raman scattering spectrum,self-assembly,organic dyes,plasticizers,ketamine, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
