Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65380
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor繆希椿
dc.contributor.authorChen-Yen Laien
dc.contributor.author賴正晏zh_TW
dc.date.accessioned2021-06-16T23:39:40Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citationAnderson,M.S. and Bluestone,J.A. (2005). The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol. 23, 447-485.
Apetoh,L., Quintana,F.J., Pot,C., Joller,N., Xiao,S., Kumar,D., Burns,E.J., Sherr,D.H., Weiner,H.L., and Kuchroo,V.K. (2010). The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854-861.
Balagopalan,L., Coussens,N.P., Sherman,E., Samelson,L.E., and Sommers,C.L. (2010). The LAT story: a tale of cooperativity, coordination, and choreography. Cold Spring Harb. Perspect. Biol. 2, a005512.
Bao,M., Yang,Y., Jun,H.S., and Yoon,J.W. (2002). Molecular mechanisms for gender differences in susceptibility to T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 168, 5369-5375.
Bauquet,A.T., Jin,H., Paterson,A.M., Mitsdoerffer,M., Ho,I.C., Sharpe,A.H., and Kuchroo,V.K. (2009). The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167-175.
Begovich,A.B., Carlton,V.E., Honigberg,L.A., Schrodi,S.J., Chokkalingam,A.P., Alexander,H.C., Ardlie,K.G., Huang,Q., Smith,A.M., Spoerke,J.M., Conn,M.T., Chang,M., Chang,S.Y., Saiki,R.K., Catanese,J.J., Leong,D.U., Garcia,V.E., McAllister,L.B., Jeffery,D.A., Lee,A.T., Batliwalla,F., Remmers,E., Criswell,L.A., Seldin,M.F., Kastner,D.L., Amos,C.I., Sninsky,J.J., and Gregersen,P.K. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330-337.
Benkhelifa,S., Provot,S., Nabais,E., Eychene,A., Calothy,G., and Felder-Schmittbuhl,M.P. (2001). Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol. Cell Biol. 21, 4441-4452.
Bottini,N., Musumeci,L., Alonso,A., Rahmouni,S., Nika,K., Rostamkhani,M., MacMurray,J., Meloni,G.F., Lucarelli,P., Pellecchia,M., Eisenbarth,G.S., Comings,D., and Mustelin,T. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 36, 337-338.
Bottini,N., Vang,T., Cucca,F., and Mustelin,T. (2006). Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin. Immunol. 18, 207-213.
Boucheron,N., Sharif,O., Schebesta,A., Croxford,A., Raberger,J., Schmidt,U., Vigl,B., Bauer,J., Bankoti,R., Lassmann,H., Epstein,M.M., Knapp,S., Waisman,A., and Ellmeier,W. (2010). The protein tyrosine kinase Tec regulates a CD44highC. J. Immunol. 185, 5111-5119.
Cao,S., Liu,J., Song,L., and Ma,X. (2005). The protooncogene c-Maf is an essential transcription factor for IL-10 gene expression in macrophages. J. Immunol. 174, 3484-3492.
Chang,H.H., Tai,T.S., Lu,B., Iannaccone,C., Cernadas,M., Weinblatt,M., Shadick,N., Miaw,S.C., and Ho,I.C. (2012). PTPN22.6, a dominant negative isoform of PTPN22 and potential biomarker of rheumatoid arthritis. PLoS. One. 7, e33067.
Chen,A., Lee,S.M., Gao,B., Shannon,S., Zhu,Z., and Fang,D. (2011). c-Abl-Mediated Tyrosine Phosphorylation of the T-bet DNA-Binding Domain Regulates CD4+ T-Cell Differentiation and Allergic Lung Inflammation. Mol. Cell Biol. 31, 3445-3456.
Chen,C.H., Zhang,D.H., LaPorte,J.M., and Ray,A. (2000). Cyclic AMP activates p38 mitogen-activated protein kinase in Th2 cells: phosphorylation of GATA-3 and stimulation of Th2 cytokine gene expression. J. Immunol. 165, 5597-5605.
Civil,A., van Genesen,S.T., and Lubsen,N.H. (2002). c-Maf, the gammaD-crystallin Maf-responsive element and growth factor regulation. Nucleic Acids Res. 30, 975-982.
Cohen,P. (2000). The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem. Sci. 25, 596-601.
Cohen,S., Dadi,H., Shaoul,E., Sharfe,N., and Roifman,C.M. (1999). Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93, 2013-2024.
Cua,D.J., Sherlock,J., Chen,Y., Murphy,C.A., Joyce,B., Seymour,B., Lucian,L., To,W., Kwan,S., Churakova,T., Zurawski,S., Wiekowski,M., Lira,S.A., Gorman,D., Kastelein,R.A., and Sedgwick,J.D. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744-748.
Curtis,M.M. and Way,S.S. (2009). Interleukin-17 in host defence against bacterial, mycobacterial and fungal pathogens. Immunology 126, 177-185.
Denu,J.M., Stuckey,J.A., Saper,M.A., and Dixon,J.E. (1996). Form and function in protein dephosphorylation. Cell 87, 361-364.
Elias,D., Meilin,A., Ablamunits,V., Birk,O.S., Carmi,P., Konen-Waisman,S., and Cohen,I.R. (1997). Hsp60 peptide therapy of NOD mouse diabetes induces a Th2 cytokine burst and downregulates autoimmunity to various beta-cell antigens. Diabetes 46, 758-764.
Ellmeier,W., Jung,S., Sunshine,M.J., Hatam,F., Xu,Y., Baltimore,D., Mano,H., and Littman,D.R. (2000). Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J. Exp. Med. 192, 1611-1624.
Eychene,A., Rocques,N., and Pouponnot,C. (2008). A new MAFia in cancer. Nat. Rev. Cancer 8, 683-693.
Frucht,D.M., Fukao,T., Bogdan,C., Schindler,H., O'Shea,J.J., and Koyasu,S. (2001). IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends Immunol. 22, 556-560.
Gnad,F., Ren,S., Cox,J., Olsen,J.V., Macek,B., Oroshi,M., and Mann,M. (2007). PHOSIDA (phosphorylation site database): management, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 8, R250.
Grasis,J.A., Browne,C.D., and Tsoukas,C.D. (2003). Inducible T cell tyrosine kinase regulates actin-dependent cytoskeletal events induced by the T cell antigen receptor. J. Immunol. 170, 3971-3976.
Grenningloh,R., Miaw,S.C., Moisan,J., Graves,B.J., and Ho,I.C. (2008). Role of Ets-1 phosphorylation in the effector function of Th cells. Eur. J. Immunol. 38, 1700-1705.
Guo,L., Hu-Li,J., and Paul,W.E. (2004). Probabilistic regulation of IL-4 production in Th2 cells: accessibility at the Il4 locus. Immunity. 20, 193-203.
Haan,S., Ferguson,P., Sommer,U., Hiremath,M., McVicar,D.W., Heinrich,P.C., Johnston,J.A., and Cacalano,N.A. (2003). Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation. J. Biol. Chem. 278, 31972-31979.
Harrington,L.E., Hatton,R.D., Mangan,P.R., Turner,H., Murphy,T.L., Murphy,K.M., and Weaver,C.T. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123-1132.
Hasegawa,K., Martin,F., Huang,G., Tumas,D., Diehl,L., and Chan,A.C. (2004). PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685-689.
Hedge,S.P., Kumar,A., Kurschner,C., and Shapiro,L.H. (1998). c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol. Cell Biol. 18, 2729-2737.
Hietakangas,V., Anckar,J., Blomster,H.A., Fujimoto,M., Palvimo,J.J., Nakai,A., and Sistonen,L. (2006). PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. U. S. A 103, 45-50.
Ho,I.C., Hodge,M.R., Rooney,J.W., and Glimcher,L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85.
Ho,I.C., Lo,D., and Glimcher,L.H. (1998). c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med 188.
Huang,W., Na,L., Fidel,P.L., and Schwarzenberger,P. (2004). Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J. Infect. Dis. 190, 624-631.
Hubbard,S.R. and Till,J.H. (2000). Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373-398.
Hunter,T. (2000). Signaling--2000 and Beyond. Cell 100, 113-127.
Hwang,E.S., Szabo,S.J., Schwartzberg,P.L., and Glimcher,L.H. (2005). T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430-433.
Igarashi,K., Kataoka,K., Itoh,K., Hayashi,N., Nishizawa,M., and Yamamoto,M. (1994). Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367, 568-572.
Imamoto,A. and Soriano,P. (1993). Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell 73, 1117-1124.
Jenkins,B.J., Roberts,A.W., Greenhill,C.J., Najdovska,M., Lundgren-May,T., Robb,L., Grail,D., and Ernst,M. (2007). Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis. Blood 109, 2380-2388.
Karin,M. and Hunter,T. (1995). Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol. 5, 747-757.
Kim,J.I., Li,T., Ho,I.C., Grusby,M.J., and Glimcher,L.H. (1999). Requirement for the c-Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci U S A 96.
Korn,T., Bettelli,E., Oukka,M., and Kuchroo,V.K. (2009). IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485-517.
Langrish,C.L., Chen,Y., Blumenschein,W.M., Mattson,J., Basham,B., Sedgwick,J.D., McClanahan,T., Kastelein,R.A., and Cua,D.J. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233-240.
Leavenworth,J.W., Ma,X., Mo,Y.Y., and Pauza,M.E. (2009). SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J. Immunol. 183, 1110-1119.
Lee,G.R., Fields,P.E., and Flavell,R.A. (2001). Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14.
Li,H., Lemay,S., Aoudjit,L., Kawachi,H., and Takano,T. (2004). SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J. Am. Soc. Nephrol. 15, 3006-3015.
Lin,B.S., Tsai,P.Y., Hsieh,W.Y., Tsao,H.W., Liu,M.W., Grenningloh,R., Wang,L.F., Ho,I.C., and Miaw,S.C. (2010). SUMOylation attenuates c-Maf-dependent IL-4 expression. Eur. J. Immunol. 40, 1174-1184.
Lin,J. and Weiss,A. (2001). Identification of the minimal tyrosine residues required for linker for activation of T cell function. J. Biol. Chem. 276, 29588-29595.
Mahoney,K.M., Petrovic,N., Schacke,W., and Shapiro,L.H. (2007). CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene 403, 178-187.
Mano,H., Ishikawa,F., Nishida,J., Hirai,H., and Takaku,F. (1990). A novel protein-tyrosine kinase, tec, is preferentially expressed in liver. Oncogene 5, 1781-1786.
Matthews,R.J., Bowne,D.B., Flores,E., and Thomas,M.L. (1992). Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol. Cell Biol. 12, 2396-2405.
McGeachy,M.J., Bak-Jensen,K.S., Chen,Y., Tato,C.M., Blumenschein,W., McClanahan,T., and Cua,D.J. (2007). TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol. 8, 1390-1397.
Motohashi,H., O'Connor,T., Katsuoka,F., Engel,J.D., and Yamamoto,M. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1-12.
Nau,G.J., Kim,D.K., and Fitch,F.W. (1988). Agents that mimic antigen receptor signaling inhibit proliferation of cloned murine T lymphocytes induced by IL-2. J. Immunol. 141, 3557-3563.
Noben-Trauth,N., Hu-Li,J., and Paul,W.E. (2000). Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J Immunol 165.
Ostman,A., Hellberg,C., and Bohmer,F.D. (2006). Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 6, 307-320.
Ouyang,W., Lohning,M., Gao,Z., Assenmacher,M., Ranganath,S., Radbruch,A., and Murphy,K.M. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12.
Park,H., Li,Z., Yang,X.O., Chang,S.H., Nurieva,R., Wang,Y.H., Wang,Y., Hood,L., Zhu,Z., Tian,Q., and Dong,C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133-1141.
Paz,P.E., Wang,S., Clarke,H., Lu,X., Stokoe,D., and Abo,A. (2001). Mapping the Zap-70 phosphorylation sites on LAT (linker for activation of T cells) required for recruitment and activation of signalling proteins in T cells. Biochem. J. 356, 461-471.
Pot,C., Jin,H., Awasthi,A., Liu,S.M., Lai,C.Y., Madan,R., Sharpe,A.H., Karp,C.L., Miaw,S.C., Ho,I.C., and Kuchroo,V.K. (2009). Cutting edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-producing Tr1 cells. J. Immunol. 183, 797-801.
Pouponnot,C., Sii-Felice,K., Hmitou,I., Rocques,N., Lecoin,L., Druillennec,S., Felder-Schmittbuhl,M.P., and Eychene,A. (2006). Cell context reveals a dual role for Maf in oncogenesis. Oncogene 25, 1299-1310.
Rocques,N., Abou,Z.N., Sii-Felice,K., Lecoin,L., Felder-Schmittbuhl,M.P., Eychene,A., and Pouponnot,C. (2007). GSK-3-Mediated Phosphorylation Enhances Maf-Transforming Activity. Mol. Cell 28, 584-597.
Song,L., Bhattacharya,S., Yunus,A.A., Lima,C.D., and Schindler,C. (2006). Stat1 and SUMO modification. Blood 108, 3237-3244.
Soumelis,V., Reche,P.A., Kanzler,H., Yuan,W., Edward,G., Homey,B., Gilliet,M., Ho,S., Antonenko,S., Lauerma,A., Smith,K., Gorman,D., Zurawski,S., Abrams,J., Menon,S., McClanahan,T., de Waal-Malefyt,R.R., Bazan,F., Kastelein,R.A., and Liu,Y.J. (2002). Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673-680.
Takata,M. and Kurosaki,T. (1996). A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J. Exp. Med. 184, 31-40.
Taylor,B.C., Zaph,C., Troy,A.E., Du,Y., Guild,K.J., Comeau,M.R., and Artis,D. (2009). TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655-667.
Tisch,R., Wang,B., and Serreze,D.V. (1999). Induction of glutamic acid decarboxylase 65-specific Th2 cells and suppression of autoimmune diabetes at late stages of disease is epitope dependent. J. Immunol. 163, 1178-1187.
Tomlinson,M.G., Kane,L.P., Su,J., Kadlecek,T.A., Mollenauer,M.N., and Weiss,A. (2004). Expression and function of Tec, Itk, and Btk in lymphocytes: evidence for a unique role for Tec. Mol. Cell Biol. 24, 2455-2466.
Tonks,N.K. (2006). Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 7, 833-846.
Vinson,C., Myakishev,M., Acharya,A., Mir,A.A., Moll,J.R., and Bonovich,M. (2002). Classification of human B-ZIP proteins based on dimerization properties. Mol. Cell Biol. 22, 6321-6335.
Whitmarsh,A.J. and Davis,R.J. (2000). Regulation of transcription factor function by phosphorylation. Cell Mol. Life Sci. 57, 1172-1183.
Wu,J., Katrekar,A., Honigberg,L.A., Smith,A.M., Conn,M.T., Tang,J., Jeffery,D., Mortara,K., Sampang,J., Williams,S.R., Buggy,J., and Clark,J.M. (2006). Identification of substrates of human protein-tyrosine phosphatase PTPN22. J. Biol. Chem. 281, 11002-11010.
Yang,X.O., Pappu,B.P., Nurieva,R., Akimzhanov,A., Kang,H.S., Chung,Y., Ma,L., Shah,B., Panopoulos,A.D., Schluns,K.S., Watowich,S.S., Tian,Q., Jetten,A.M., and Dong,C. (2008). T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity. 28, 29-39.
Yoh,K., Sugawara,T., Motohashi,H., Takahama,Y., Koyama,A., Yamamoto,M., and Takahashi,S. (2001). Transgenic over-expression of MafK suppresses T cell proliferation and function in vivo. Genes Cells 6, 1055-1066.
Zheng,L., Baumann,U., and Reymond,J.L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 32, e115.
Zheng,W. and Flavell,R.A. (1997). The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89.
Zhu,J., Guo,L., Watson,C.J., Hu-Li,J., and Paul,W.E. (2001). Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J. Immunol. 166, 7276-7281.
Zhu,J., Yamane,H., and Paul,W.E. (2010). Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 28, 445-489.
Zipfel,P.A., Zhang,W., Quiroz,M., and Pendergast,A.M. (2004). Requirement for Abl kinases in T cell receptor signaling. Curr. Biol. 14, 1222-1231.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65380-
dc.description.abstractMaf家族蛋白質參與多種重要的生物反應,包括腫瘤生成過程和水晶體發育及分化。在Maf家族蛋白質的成員之c-Maf在免疫系統中扮演多樣又重要的角色。它被發現能轉錄活化介白質四的表現,而在初代T細胞中異位過度表現c-Maf會使T細胞趨往分化為第二型輔助性T細胞。然而我們對於c-Maf的轉譯後修飾研究所知甚少。而本研究首次發現在第二型輔助性T細胞中,c-Maf能分別在第21號、第92號、第131號酪胺酸位置被磷酸化。另外我們的研究顯示在這三個位置磷酸化對於c-Maf結合到介白質四的啟動子進而促使第二型輔助性T細胞分泌介白質四是重要的。我們使用第一型糖尿病的模式動物NOD小鼠做活體外分化第二型輔助性T細胞實驗,結果顯示NOD小鼠中第二型輔助性T細胞的c-Maf酪胺酸磷酸化程度與介白質四基因的表現成正相關,而與NOD小鼠發病嚴重程度成負相關。此外,對於能將c-Maf進行酪胺酸磷酸化的激脢研究有更進一步的探討。總結來說,本研究釐清c-Maf的酪胺酸磷酸化修飾現象以及此修飾對於介白質四基因的影響。zh_TW
dc.description.abstractMaf proteins are involved in a variety of biological processes such as oncogenesis, lens development and differentiation. One of Maf protein family members, c-Maf, plays central and diverse roles in immune system. It was found that c-Maf transactivates IL-4 promoter, and ectopic expression of c-Maf skews primary T cell response towards the TH2 pathway. However, the modulation of c-Maf activity through post-translation modification remains unclear. Here, we show for the first time that c-Maf undergoes tyrosine phosphorylation at Tyr21, Tyr92 and Tyr131 residues in TH2 cells. Furthermore, tyrosine phosphorylation at these three residues is critical for the recruitment of c-Maf to IL-4 promoter and IL-4 production in TH2 cells. Importantly, the level of c-Maf tyrosine phosphorylation positively correlates with IL-4 expression by skewed TH2 cells and its level negatively associates with the severity of disease in NOD mice. The possible kinases responsible for phosphorylating c-Maf is further investigated. Taken together, this study sheds new light on the modification of c-Maf by tyrosine phosphorylation and its effect on downstream gene target Il4en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:39:40Z (GMT). No. of bitstreams: 1
ntu-101-D94449002-1.pdf: 1526952 bytes, checksum: 47d7e8e457c4777b4225a7ff0db066ea (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTables of contents
中文摘要 ii
Abstract iii
Chapter I Introduction 1
1.1 The differentiation of T helper cells 1
1.1.1 TH1 differentiation 1
1.1.2 TH2 differentiation 2
1.1.3 TH17 differentiation 3
1.2 The function of c-Maf 5
1.2.1 The overview of Maf family 5
1.2.2 The diverse function of c-Maf 6
1.3 An overview of kinase and phosphatase in immune cells 7
1.3.1 Phosphorylation by PTK in immune cell responses 7
1.3.2 Dephosphorylation by PTP 10
1.4 The versatile role of tyrosine-phosphorylated proteins in immune cells 13
1.5 The role of post-translational modification in Maf family 14
1.6 Rationale and significance 15
Chapter II Materials and Methods 16
2.1 Materials 16
2.1.1 Mice 16
2.1.2 Cells 16
2.1.3 Antibodies 16
2.1.4 Primers 17
2.2 Methods 18
2.2.1 Generation of c-Maf mutants 18
2.2.2 Cell transfection 18
2.2.3 Immunoprecipitation and Western Blotting 19
2.2.4 Luciferase assay 20
2.2.5 In vitro TH cells differentiation 20
2.2.6 Quantitative real-time PCR 21
2.2.7 Retrovirus infection 21
2.2.8 Measurement of IL-4 production in primary T cells 22
2.2.9 Confocal microscopy 22
2.2.10 CIP alkaline phosphatase treatment 23
2.2.11 Preparation of recombinant GST c-Maf 23
2.2.12 In vitro kinase assay 23
2.2.13 Cytosolic and nuclear extract separation 24
2.2.14 EMSA 24
2.2.15 CFSE proliferation assay 25
Chapter III Results 26
3.1 Tyrosine residues of c-Maf can be phosphorylated in TH2 clone and primary TH2 cells. 26
3.2 The dominant tyrosine residues of c-Maf for phosphorylation are located at Tyr21, Tyr92 and Tyr131. 27
3.3 Optimal c-Maf-dependent IL-4 expression requires tyrosine phosphorylation at Tyr21/92/131 29
3.4 The subcellular localization of c-Maf is not affected by its tyrosine phosphorylation status 30
3.5 Tyrosine phosphorylation of c-Maf facilitates its binding to IL-4 promoter 31
3.6 The level of tyrosine phosphorylation of c-Maf correlates positively with IL-4 production but negatively with disease activity in NOD mice 31
3.7 The degree of proliferation and differentiation in TH2 cells from NOD mice that had developed glycosuria and age-matched healthy NOD mice are comparable. 33
3.8 The putative tyrosine kinase for phosphorylating c-Maf 34
3.9 The IL-4 transactivity is enhanced by kinase induced-phospho-c-Maf 36
Chapter IV Discussion 38
4.1 TH2 specific transcription factor, c-Maf, is phosphorylated at multiple tyrosine residues. 38
4.2 The IL-4 transactivity of c-Maf is regulated by phosphorylation and SUMOylation. 40
4.3 One of tyrosine kinases that can phosphorylate c-Maf 41
4.4 Negative correlation between the level of c-Maf phosphorylation and severity of diabetes in NOD mice 44
Figures and Tables 46
References 90
Appendix 100
dc.language.isoen
dc.subject介白質四zh_TW
dc.subject輔助型T細胞zh_TW
dc.subject酪胺酸磷酸化zh_TW
dc.subject介白素四zh_TW
dc.subjectc-Mafen
dc.subjecttyrosine phosphorylationen
dc.subjectIL-4en
dc.subjectTh2en
dc.title酪胺酸磷酸化修飾之c-Maf強化轉錄介白質四的生成zh_TW
dc.titleTyrosine phosphorylation of c-Maf enhances the expression of IL-4 geneen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee賴明宗,司徒惠康,張智芬,顏裕庭
dc.subject.keyword酪胺酸磷酸化,介白質四,介白素四,輔助型T細胞,zh_TW
dc.subject.keywordc-Maf,tyrosine phosphorylation,IL-4,Th2,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2012-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved