請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65379完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Cheng-Yu Ho | en |
| dc.contributor.author | 何承育 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:39:37Z | - |
| dc.date.available | 2017-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | Chapter 1:
[1] G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn: Phys. Rev. B. 39, 4828 (1989) [2] M.N. Baibich, J.M.Broto, A.Fert, F.N.Vandau, F.Petroff, P.Eitenne, G.Creuzet, A.Friederich, J.Chazelas: Phys. Rev. Lett. 61, 2472 (1988) [3] J.Nickel (Computer Peripherals Laboratory): Magnetoresistance Overview (1995) [4] V.F. Motsnyi, J. De Boeck, J.Das, W. Van Roy, G. Borghs, E. Goovaerts, V. I. Safarovl: Appl. Phys. Lett. 81, 265 (2002) [5] N. V. Baidus, M. I. Vasilevskiy, M. J. M. Gomes, M. V. Dorokhin, P. B. Demina, E. A. Uskova, B. N. Zvonkov, V. D. Kulakovskii, A. S. Brichkin, A. V. Chernenko, and S. V. Zaitsev: Appl. Phys. Lett. 89, 181118 (2006) [6] P. Renucci, V. G. Truong, H. Jaffres, L. Lombez, P. H. Binh, T. Amand, J. M. George, X. Marie: Phys. Rev. B. 82, 195317 (2010) [7] Y. R. Wu, C.H Chiu, C.Y. Chang, P.C. Yu, H.C Kuo: IEEE J. 15, 1226 (2009) [8] I. A. Buyanova, J. P. Bergman, W. N. Chen, G. Thaler, R. Frazier, C. R. Abernathy, S. J. Rearton, J. Kim, F. V. Kyrychenko, C. J. Stanton, C. C. Pan, G. T. Chen, J. I. Chyi, Chyi, J. M. Zavada: J. Vac. Sci. Tech. B. 22, 2668 (2004) [9] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Berlin (1997) Chapter 2.1 [1] D. A. Neamen: Semiconductor physics and devices, McGraw- Hill (2003) [2] H. Welker: Zeitschrift fur naturforschung section A-A J. Phys. Sci. 6, 184 (1951) [3] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Berlin (1997) [4] T. Ando, A.B. Fowler, F. Stern: Rev. Mod. Phys. 44, 437 (1982) [5] G. Bastard, J. A. Burn, R. Ferreira: Solid State Phys. 44, 229 (1991) [6] S. Nakamura, Y. Harada, M. Seno: Appl. Phys. Lett. 58, 2021 (1991) [7] E. F. Schubert: Light-emitting diods, Cambridge, New York (2006) [8] R. Jones: Material Science and Engineering B. 71, 24 (2000) [9] J. Jasinski, K.M. Yu, W. Walukiewicz, Z. Liliental- Weber, J. Washburn: Physica B. 308, 874 (2001) [10] O. Gelhausen, H. N. Klein, M. R. Phillips, E. M. Goldys: Phys. Stat. Sol. (b) 239, 310 (2003) [11] C. Frigeri, J. L. Weyher, J. Jimenez, P. Martin: Journal de Physique III. 7, 2339 (1997) [12] L. Chernyak, A. Osinsky, V. Fuflyigin, E. F. Schubert: Appl. Phys. Lett. 77, 875 (2000) [13] 吳忠霖,果尚志:“三族氮化物異質接面之晶格與能帶結構”, 物理雙月刊,三 十卷,六期 (2008) [14] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park: Appl. Phys. Lett. 91, 183407 (2007) [15] M. F. Schubert, J Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, Y. Park: Appl. Phys. Lett. 93, 041102 (2008) Chapter2.2 [1] J. J. Sakurai: Advanced Quantum Mechanics, Addison- Wesley, Reading, MA (1967) [2] J. C. Slater: Quantum Theory of Atomic Structure, McGrew-Hill, New York (1960) [3] J. M. Luttinger: Phys. Rev. 102, 1030 (1956) [4] M. I. Dymnikov, M. I. Perel, Z. Eksp: Teor. Fiz. 71, 2371 (1971) [5] M. I. Dymnikov, M. I. Perel, Z. Eksp: Sov. Phys. JEPT. 33, 1053 (1971) [6] P. Y. Yu, M. Cardona: Fundamental of Semiconductor, Springer, Berlin (2001) [7] Z. G. Yu, S. Krishnamurthy, M. van Schilfgaarde, N. Newman: Phys. Rev. B. 71, 245312 (2005) [8] R.J. Elliot: Phys. Rev. 96, 266 (1954) [9] Y. Yafet: Solid State Physics-Advances in Research and Application. 14, 1 (1963) [10] M. I. Dymnikov, M. I. Perel: Fiz. Tverd. Tela. 13, 3581 (1971) [11] M. I. Dymnikov, M. I. Perel: Sov. Phys. Solid State. 13, 3032 (1976) [12] G.L. Bir, A.G. Aronov, G.E. Pikus: Sov. Phys. JETP. 42, 705 (1976) [13] E.I. Rashba: Sov. Phys. Solid State. 2, 1109 (1960) [14] F. Meier, B. P. Zakharchenya: Optical Orientation, Elsevier Science, Amsterdam (1984) [15] S. L. Chuang, C. S. Chang: Phys. Rev. B. 54, 2491 (1996) [16] W. J. Fan, S. F. Yoon, M. F. Li, T. C. Chong: Physica B. 328, 264 (2003) [17] Y. Song, D. Chen, L. Wang, H. T. Li, G. Y. Xi, Y. Jiang: Appl. Phys. Lett. 93, 161910 (2008) [18] S. Krishnamurthy, M. van Schilfgaarde, N. Newman: Appl. Phys. Lett. 83, 1761 (2003) [19] A. Yu. Egorov, V. K. Kalevich, M. M. Afanasiev, A. Yu. Shiryaev, V. M. Ustinov, M. Ikezawa, Y. Masumoto: Journal of Applied Physics. 98, 013539 (2005) [20] B. T. Jonker, S. C. Erwin, A. Petrou, A. G. Petukhov: MRS Bull. 28, 740 (2003) Chpater 2.3 [1] B.R. Coles: Adv. Phys. 7, 40 (1958) [2] N. F. Mott: Proc. R. Soc. London, Ser. A. 153, 699 (1963) [3] N. F. Mott: Proc. R. Soc. London, Ser. A. 156, 368 (1963) [4] A. G. Aronov: Pis’ma Zh. Eksp. Teor. Fiz. 24, 37 (1976) [5] A. G. Aronov: JETP Lett. 24, 32 (1976) [6] U. Hartmann: Magnetic Multilayers and Giant Magnetoresistance. Springer,Berlin (2000) [7] M. Gatzlaff: fundamentals of Magnetism, Springer, Berlin (2007) [8] I. Zutic, J. Fabian, S. Das Sarma: Rev. Mod. Phys. 76, 323 (2004) [9] P. M. Tedrow, R. Meservey: Phys. Rev. Lett. 7, 318 (1973) [10] J. W. F. Dorleijn: Philips Res. Rep. 31, 287 (1976) [11] E. P. Wohlfarth: Ferromagnetic Material, North-Holland Publ. Co, Amsterdam(1982) [12] R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Wang, L. W.Molenkamp: nature. 402, 787 (1999) Chapter 3 [1] L. Holland: Vacuum Deposition of Thin Film. Chapman & Hall (1963) [2] K. L. Chopra: Thin Film Phenomena. McGrew-Hill (1969) [3] G. Gunther: Z. Naturforshung. 13a, 1018 (1958) [4] Y. Yoshida: CRC critical Rev. 11, 287 (1984) [5] J. L. Vossen, W. Kern: Thin Film Process. Academic Press (1978) [6] K. Tominaga, S. Iwamure, S. Shintani, O. Tada: Jpn. J. Appl. Phys. 21, 668 (1982) [7] A. Kinbara, E. Kusano, R. Ando, S. Horita: Jpn. J. Appl. Phys. 33, 455 (1994) [8] T. Hata, Y. Matsuda, S. Baba: J. Vac. Soc. Tech. 10, 1484 (1992) [9] T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Hanada, K. Wasa: Vacuum. 51, 2583 (1998) [10] Goldberg: Luminescence of Inorganic Solids. Academic Press, New York (1966) [11] K. D. Mielenz: Optical Radiation Measurement. Academic Press, New York (1982) [12] B. Gerald: Wave Mechanics applied to Semiconductor Heterostructures. Halsted Press, New York (1984) [13] A.H. Kitai: Solid State Luminescence. Chapman & Hill, New York (1993) [14] P. Sidney: Optical Characterization of Semiconnductor. Academic Press, New York (1993) [15] J. H. Simmons, K. S. Potter: Optical Materails. Academic Press, San Diego (2000) [16] J. Wagner: Phys. Rev. B. 4, 2002 (1984) [17] M. A. Herman, D. Bimberg, J. Christen: J. Appl. Phys. 70, R1 (1991) Chapter 4 [1] G. Prinz: Phys. Today. 48, 58 (1995) [2] S. J. Pearton, D. P. Norton, R. Frazier, S. Y. Han, C.R. Abernathy, J. M. Zavada IEE Proceedings-Circuits Devices and systems. 152, 312 (2005) [3] A. G. Aronov, G. E. Pikus: Sov. Phys. Semicond 10, 69 (1976) [4] G. Schmidt, G. Richter, P. Grabs, C. Gould, D. Ferrand, L. W. Molenkamp: Phys. Rev. Lett. 87, 227203 (2001) [5] P. M. Tedrow, R. Meservey, Phys. Rep. 238, 173 (1994) [6] G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn: Phys. Rev. B. 39, 4828 (1989) [7] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando: Nature Materials. 3, 868, (2004) [8] M. I. Dyakonov, V. Y. Kachorovski: Sov. Phys. Semiconductor-USSR. 20, 110 (1986) [9] T. Dietl: Semicond. Sci. Technol. 17, 377 (2002) [10] P. M. Tedrow, R. Meservey: Phys. Rev. B. 7, 318 (1973) [11] I. Zutic, J. Fabian, S. Das Sarma: Rev. Mod. Phys. 76, 323 (2004) [12] Y. D. Park, B. T. Jonker, B. R. Bennett, G. Itskos, M. Furis, G. Kioseoglou, A. Petrou: Appl. Phys. Lett. 77, 3989 (2000) [13] B. T. Jonker, A. T. Hanbicki, Y. D. Park, G. Itskos, M. Furis, G. Kioseoglou, A. Petrou, X. Wei: Appl. Phys. Lett. 79, 3098 (2001) [14] A. T. Hanbicki, O. M. J. van ’t Erve, R. Magno, G. Kioseoglou, C. H. Li, B. T. Jonker, G. Itskos, R. Mallory, M. Yasar, A. Petrou: Appl. Phys. Lett. 82, 4092 (2003) [15] S. Krishnamurthy, M. van Schilfgaarde, N. Newman: Appl. Phys. Lett. 83, 1761 (2003) [16] A. Tackeuchi, T. Kuroda, A. Shikanai, T. Sota, A. Kuramata, K. Domen: physica E. 7, 1001 (2000) [17] I. A. Buyanova, M. Izadifard, W .M. Chen, J. Kim, F. Ren, G. Thaler, C. R. Abernathy, S. J. Pearton, C. C. Pan, G. T. Chen, J. I. Chyi, J. M. Zavada: Appl. Phys. Lett. 84, 2599 (2004) [18] I. A. Buyanova, J. P. Bergman, W. M. Chen, G. Thaler, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, F. Ren, F. V. Kyrychenko, C. J. Stanton, C. C. Pan, G. T. Chen, J. I. Chyi, J. M. Zavada: J. Vac. Sci. Technol. B. 22, 2668 [19] C. V. Raman: Nature. 121, 619 (1928) [20] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P.l T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota: Nature Materials. 5, 810 (2006) [21] S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, Berlin (1997) [22] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, W. S. Chung: Nano Lett. 4, 1059 (2004) [23] C. H. Chiu, T. C. Lu, H. W. Huang, C. F. Lai, C. C. Kao, J. T. Chu, C. C. Yu, H. C. Kuo, S. C. Wang, C. F. Lin, T. H. Hsueh: Nanotechnology 18, 445201 (2007) [24] B. T. Jonker, S. C. Erwin, A. Petrou, A. G. Petukhov: MRS Bull. 28, 740 (2003). [25] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park: Appl. Phys. Lett. 91, 183407 (2007) [26] M. F. Schubert, J Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, Y. Park: Appl. Phys. Lett. 93, 041102 (2008) [27] H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S. Wu, C. D. Chen: Nanotechnology 17, 1454 (2006) [28] Y. R. Wu, C. H. Chiu, C. Y. Chang, P. C. Yu, H. C. Kuo: IEEE. J. Sel. Top. Quantum. Electron. 15, 1226 (2009) [29] L. Yi. Chen, Y. Y. Huang, C. H. Chang, Y. H. Sun, Y. W. Cheng, M. Y. Ke, C. P. Chen, J. J. Huang: Optics Express. 18, 7669 (2010) [30] F. Meier, B. P. Zakharchenya: Optical Orientation, Elsevier Science, Amsterdam (1984) [31] P. M. Tedrow, R. Meservey: Phys. Rev. Lett. 7, 318 (1973) [32] J. W. F. Dorleijn: Philips Res. Rep. 31, 287 (1976) [33] Z. G. Yu, S. Krishnamurthy, M. van Schilfgaarde, N. Newman: Phys. Rev. B. 71, 245312 (2005) [34] W. J. Fan, S. F. Yoon, M. F. Li, T. C. Chong: Physica B. 328, 264 (2003) [35] Y. Song, D. Chen, L. Wang, H. T. Li, G. Y. Xi, Y. Jiang: Appl. Phys. Lett. 93, 161910 (2008) [36] A. Yu. Egorov, V. K. Kalevich, M. M. Afanasiev, A. Yu. Shiryaev, V. M. Ustinov, M. Ikezawa, Y. Masumoto: Journal of Applied Physics. 98, 013539 (2005) [37] E.I. Rashba: Sov. Phys. Solid State. 2, 1109 (1960) [38] A. Yanase, N. Hamade: J. Phys. Soc. Jap. 68, 1607 (1999) [39] M. H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner, J. M. Myoung: J. Phys.: Condens. Matter. 18, 7703 (2006) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65379 | - |
| dc.description.abstract | 本論文的動機乃欲比較傳統薄膜自旋半導體與奈米柱結構自旋半導體的輻射旋光度(Degree of circularly polarized light)的表現優劣。實驗上主要利用光激螢光(PL)與電激螢光(EL)方法來研究三─五族(氮化銦鎵/氮化鎵)奈米柱半導體所構成的自旋光電半導體的輻射旋光度於外加磁場下的變化,並再附著磁性奈米球 (四氧化三鐵)於奈米柱的孔隙中進而影響輻射旋光度。
當薄膜多重量子井被蝕刻為奈米柱多重量子井時,由於內建電場大幅縮小、侷限位勢亦趨向對稱,使得量子侷限史塔克效應(QCSE)消失,進而降低量子井內的快速自旋弛豫,同而增加載子自旋同調時間。另外,磁性奈米球的加入造成自旋閥效率提升。因載子自旋同調時間和自旋閥效率一併提升,本文研究顯示於常溫低磁下,吸附了磁性奈米球的奈米柱自旋光電半導體的輻射旋光度達10%以上並遠遠大於同樣材料的薄膜自旋半導體。並且其常溫低磁的條件也遠優於具備相同輻射旋光度之自旋半導體。 | zh_TW |
| dc.description.abstract | The motivation of this thesis is to compare the performance of the degree of circularly polarized light between conventional thin film spin-LED and nanorod spin-LED. In our experiment, we compare the degree of circularly polarized light for the thin film and nanorod spin-LEDs, which is composed of InGaN/GaN multiple quantum wells, under an external magnetic field by photoluminescence and electroluminescence. We also deposit the Fe3O4 nanoparticles into the space between nanorods in order to enhance the degree of circularly polarized light arising from nanorod spin-LED.
The quantum confined stark effect will gradually vanish and confined potential will become more symmetric as the thin film multiple quantum wells are etched into the nanorod structure. Thus the spin coherent time will become longer in quantum well. In addition, the efficiency of spin valve will increase after the deposition of Fe3O4 nanoparticles. Due to the increment for both the spin coherence time and efficiency of spin valve, our results show that the degree of circularly polarized light of the nanorod spin-LED with Fe3O4 nanoparticles under low external magnetic field and room temperature can be more than 10%. Its excellence performance and practical working condition make nanorod spin-LED becomes a potential spin device. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:39:37Z (GMT). No. of bitstreams: 1 ntu-101-R99245014-1.pdf: 2070835 bytes, checksum: 9c2f02b1171ffb3ff700bb63aee5bfec (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 II
摘要 III Abstract IV LIST OF FIGURES VIII LIST OF TABLES XII Chapter 1 Introduction 1 Chapter 2 Theoretical Background 5 2.1 Light emitting diode 5 2.1.1 Introduction to the structure of light emitting diode 5 2.1.2 Quantum-confined stark effect in GaN/InGaN multiple quantum well 8 2.2 Spin-related properties in semiconductors 15 2.2.1 Spin-orbit interaction 15 2.2.2 Spin-orbit interaction in semiconductors 17 2.2.3 Spin relaxation in semiconductors 22 2.2.4 The Rashba interaction 29 2.2.5 Spin-dependent selection rule 31 2.3 Spin injection 37 2.3.1 Negative magnetoresistance 37 2.3.2 Spin valve effect 42 Chapter 3 Experimental Setups 47 3.1 Thermal evaporation deposition 47 3.2 DC sputter deposition 51 3.3 Scanning electron microscopy 56 3.4 Photoluminescence spectroscopy 59 Chapter 4 Spin injection from Ni thin film and Fe3O4 nanoparticle into InGaN/GaN nanorod light-emitting diode 65 4.1 Introduction 65 4.2 Experimental details 68 4.3 Results and discussion 74 4.4 Summary 82 Chapter 5 Conclusion 88 | |
| dc.language.iso | en | |
| dc.subject | 氮化銦鎵/氮化鎵奈米柱多重量子井 | zh_TW |
| dc.subject | 量子侷限史塔克效應 | zh_TW |
| dc.subject | Rashba自旋軌道交互作用 | zh_TW |
| dc.subject | 自旋閥 | zh_TW |
| dc.subject | 四氧化三鐵奈米球 | zh_TW |
| dc.subject | InGaN/GaN nanorod multiple quantum wells | en |
| dc.subject | Quantum confined stark effect | en |
| dc.subject | Rashba spin-orbit interaction | en |
| dc.subject | Spin valve | en |
| dc.subject | Fe3O4 nanoparticle | en |
| dc.title | 自旋電子流自鎳薄膜及四氧化三鐵奈米球注入至氮化銦鎵/氮化鎵奈米柱光電半導體之研究 | zh_TW |
| dc.title | Spin injection from Ni thin film and Fe3O4 nanoparticle into InGaN/GaN nanorod light-emitting diode | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁啟德(Chi-Te Liang),林泰源(Tai-Yuan Lin) | |
| dc.subject.keyword | 氮化銦鎵/氮化鎵奈米柱多重量子井,量子侷限史塔克效應,Rashba自旋軌道交互作用,自旋閥,四氧化三鐵奈米球, | zh_TW |
| dc.subject.keyword | InGaN/GaN nanorod multiple quantum wells,Quantum confined stark effect,Rashba spin-orbit interaction,Spin valve,Fe3O4 nanoparticle, | en |
| dc.relation.page | 88 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
