Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65373
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安(Chi-An Dai)
dc.contributor.authorYang-Hui Chenen
dc.contributor.author陳泱卉zh_TW
dc.date.accessioned2021-06-16T23:39:14Z-
dc.date.available2017-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citation1. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Science 1995, 270, 1789-1791.
2. Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. P., Adv. Mater. 2010, 22, 1-4.
3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Nature 1990, 347, 539-543.
4. Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Andersson, M. R.; Hjertberg, T.; Wennerstrom, O., Nature 1994, 372, 444-446.
5. Qiu, L. Z.; Lee, W. H.; Wang, X. H.; Kim, J. S.; Lim, J. A.; Kwak, D.; Lee, S.; Cho, K., Adv. Mater. 2009, 21, 1349-1353.
6. Yan, H.; Chen, Z. H.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A., Nature 2009, 457, 679-686.
7. W. T. Xu; L. G. Li; H. W. Tang; H. Li; X. L. Zhao; X. N. Yang, J. Phys. Chem. B 2011, 115, 6412–6420.
8. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Angew. Chem. Int. Ed. 1998, 37, 402-428.
9. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. S., Adv. Mater. 2000, 12, 1737-1750.
10. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J., Chem. Rev. 2005, 105, 1491-1546.
11. Kane, R. S.; Cohen, R. E.; Sibey, R., Chem. Mater. 1999, 11, 90-93.
12. Koh, H.-D.; Kang, N.-G.; Lee, J.-S., Langmuir 2007, 23, 12817-12820.
13. Főster, S.; Antonietti, M., Adv. Mater. 1998, 10, 195-217.
14. Koh H. D.; Lee J. P.; Lee J. S., Macromol. Rapid Commun. 2009, 30, 976-980.
15. Hideki, S.; Edwin, J. L.; Alan, G. M.; Chwan, K. C.; Alan, J. H., Journal of the Chemical Society, Chemical Communications 1977, 16, 578-580.
16. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H., J. Am. Chem. Soc. 1978, 100 (3), 1013-1015.
17. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Physical Review Letters 1977, 39 (17), 1098-1101.
18. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. g.; Chiang, C. K.; Heeger, A. J., J. C. S. Chem. Comm. 1997, 578-580.
19. Scrosati, B., Polymer International 1998, 47,50-55.
20. Fangyi, C.; Wei, T.; Chunsheng, L.; Jun, C.; Huakun, L.; Panwen, S.; Shixue, D., Chemistry - A European Journal 2006, 3082-3088.
21. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J., Nature 1992, 357 (6378), 477-479.
22. Vanlaeke, P.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; Manca, J.; Heremans, P.; Poortmans, J., Thin Solid Films 2006, 511-512, 358-361.
23. Dyer, A.; Grenier, C.; Reynolds, J. A., Advanced Functional Materials 2007, 1480-1486.
24. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Nature 1998, 395 (6699), 257-260.
25. Jun, G.; Gang, Y.; Alan, J. H., Advanced Materials 1998, 692-695.
26. Smita D.; Nikos K.; Dana C. O.; David S. G.; Garry R., J. Am. Chem. Soc. 2009, 131, 17726-17727.
27. wekipedia, polythiophene.
28. 顏惟哲, Synthesis and characterization of Poly (3-hexylthiophene)-b-Poly (2-vinylpyridine). 2005.
29. Chen, T. A.; Wu, X. M.; Rieke R. D. J. Am., Chem. SOC 1995, 117, 233-244.
30. McCullough R. D.; t.S.T.-N.; t.R.D.L.a. Shawn P. Williams; M.a.k.J.a. yaramant, J. Am. Chem. Soc. 1993, 115, 4910-4911.
31. Chen, S.-A.; Ni, J.-M., Macromolecules 1992, 25(23), 6081-6089.
32. Liu, J. P.; Xu, C. X.; Zhu, G. P.; Li, X.; Cui, Y. P.; Yang, Y.; Sun, X. W., Journal of Physics D: Applied Physics 2007, 40, 1906-1909.
33. Iovu, M. C.; Sheina E. E.; Gil R. R.; McCullough R.D., Macromolecules 2004, 37, 3526-3528.
34. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T., J. Am. Chem. Soc. 2005, 127(49), 17542-17547.
35. McCullough R.D., Macromolecules 1996, 29, 3654-3657.
36. Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Nature 1999, 401, 685-688.
37. Jen, K.-Y.; Miller, G. G.; Elsenbaumer, R. L. J., Chem. Soc., Chem. Commun 1986, 1346-1347.
38. Elsenbaumer, R. L.; Jen, K. Y.; Oboodi, R., Synth. Met 1986, 15, 169-174.
39. Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F., Macromolecules 1987, 20, 212-215.
40. Yang X. N.; Loos J.; Veenstra S. C.; Verhees W. J. H.; Wienk M. M.; Kroon J. M.; Michels, M. A. J.; Janssen, R. A. J., Nano Lett. 2005, 5(4), 579-583.
41. Yang, X.; Loos, J., Macromolecules 2007, 40, 1353-1362.
42. Chen, L. M.; Hong, Z. R.; Li, G.; Yang, Y., Adv. Mater. 2009, 21, 1434-1449.
43. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Nat. Mater. 2005, 4, 864-868.
44. Lu, G. H.; Li, L. G.; Yang, X. N., Adv. Mater. 2007, 19, 3594-3598.
45. Lu, G. H.; Li, L. G.; Yang, X. N., Macromolecules 2008, 41, 2062-2070.
46. Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Angew. Chem. Int. Ed. 1998, 37, 402-428.
47. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. S., Adv. Mater. 2000, 12, 1737-1750.
48. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J., Chem. Rev. 2005, 105, 1491-1546.
49. Leclere, P.; Parente, V.; Bredas, J. L.; Francois, B.; Lazzaroni, R., Chem. Mater. 1998, 10, 4010-4014.
50. Cho, G.; Jung, M.; Yang, H.; Song, J. H.; Sung, M. M., Langmuir 2006, 22, 4896-4898.
51. Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A., Macromolecules 2008, 41, 67-75.
52. Lee, Y. H.; Chang, C. J.; Kao, C. J.; Dai, C. A., Langmuir 2010, 26, 4196-4206.
53. Olsen, B. D.; Segalman, R. A., Macromolecules 2005, 38, 10127-10137.
54. Olsen, B. D.; Segalman, R. A., Macromolecules 2007, 40, 6922-6929.
55. Ho, C. C.; Lee, Y. H.; Dai, C. A.; Segalman, R. A.; Su, W. F., Macromolecules 2009, 42, 4208-4219.
56. Olsen, B. D.; Segalman, R. A., Macromolecules 2007, 40, 6922-6929.
57. Sary, N.; Brochon, C.; Hadziioannou, G.; Mezzenga, R., Eur. Phys. J. E 2007, 24, 379–384.
58. Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J., Macromolecules 2007, 40, 3277-3286.
59. Liu, J.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J., J. Am. Chem. Soc. 2004, 126, 6550-6551.
60. Thompson, B. C.; Frechet, J. M. J., Angew. Chem. Int. Ed. 2008, 47, 58-77.
61. Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F., Macromolecules 1987, 20, 212-215.
62. Sugimoto, R.; Takeda, S.; Gu, H. B.; Yoshini, K., Chem. Expr. 1986, 1, 635-638.
63. Lowe, R. D.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater. 1999, 11, 250.
64. Iovu, M. C.; Sheina, E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38, 8649.
65. Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem. Soc. 2008, 130, 7812.
66. Oshimidzu, K.; Ueda, M., Macromolecules 2008, 41, 5289.
67. Miyakoshi, R.; Shimoto, K.; Yokoyama, A.; Yokozawa, T., J. Am. Chem. Soc. 2006, 128, 16012.
68. Yokoyama, A.; Kato, R.; Miyakoshi, R.; Yokozawa, T., Macromolecules 2008, 41, 7271.
69. Tu, G.; Li, H.; Foster, M.; Heiderhoff, R.; Balk, L. J.; Sigel, R.; Scherf, U., Small 2007, 3, 1001.
70. Song, J.; Lim, S., J. Phys. Chem. C 2006, 111 (2), 596-600.
71. Wu, J. J.; Liu, S. C., Adv. Mater. 2002, 215-218.
72. Guo, M.; Diao, P.; Cai, S., Journal of Solid State Chemistry 2005, 178 (6), 1864-1873.
73. Oosterhout, S.D.; Wienk, M. M.; Al-Hashimi, M.; Heeney, M.; Janssen, R. A. J., J. Phys. Chem. C 2011, 115, 18901-18908.
74. Braun, C. H.; Richter, T. V.; Schacher, F.; Műller, A. H. E.; Crossland, E. J. W.; Ludwigs, S., Macromol. Rapid Commun. 2010, 31, 729-734.
75. Cao, H. L.; Qian, X. F.; Gong, Q.; Du, W. M.; Ma, X. D.; Zhu, Z. K., Nanotechnology 2006, 17, 3632-3636.
76. Tak, Y.; Yong, K., J. Phys. Chem. B 2005, 109 (41), 19263-19269.
77. Wang, X.; Song, J.; Liu, J.; Wang, Z. L., Science 2007, 316 (5821), 102-105.
78. Qin, Y.; Wang, X.; Wang, Z. L., Nature 2008, 451 (7180), 809-813.
79. Wang, X. D.; Neff, C.; Graugnard, E.; Ding, Y.; King, J. S.; Pranger, L. A.; Tannenbaum, R.; Wang, Z. L.; Summers, C. J., Adv. Mater. 2005, 2103-2106.
80. Pauporte, T.; Rathousky, J., J. Phys. Chem. C 2007, 111 (21), 7639-7644.
81. Kong, X. Y.; Wang, Z. L., Nano Letters 2003, 3 (12), 1625-1631.
82. Gao, P. X.; Ding, Y.; Mai, W.; Hughes, W. L.; Lao, C.; Wang, Z. L., Science 2005, 309 (5741), 1700-1704.
83. Esumi, K.; Houdatsu, H.; Yoshimura, T., Langmuir 2004, 20, 2536-2538.
84. Templin, M.; Franck, A.; DuChesne, A.; Leist, H.; Zhang, Y. M.; Ulrich, R.; Schadler, V.; Wiesner, U., Science 1997, 278, 1795-1798.
85. Widawski, G.; Rawiso, M.; Francois, B., Nature 1994, 369, 387-389.
86. Osman E-A.; Taner A.; Omer F. M.; Vesna S.; Peter A. v. A.; Clera W. Ow-Y., Langmuir 2010, 26(10), 7431-7436.
87. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T., J. Am. Chem. Soc. 2005, 127, 17542.
88. 魏凡凱, Synthesis, Self-Assembly and Application of all-conjugated Block Copolymers and Their Applications in Nanohybrid System, 2011.
89. Oosterhout S. D.; Koster L. J. A.; Bavel S. S., Loos J.; Stenzel O.; Thiedmann R.; Schmidt V.; Campo B.; Cleij T. J.; Lutzen L.; Vanderzande D.; Wienk M. M.; Janssen R. A. J., Adv. Energy Mater. 2011, 1, 90-96.
90. Wang M.; Wang X., Solar Energy Materials and Solar Cell 2008, 92, 766-771.
91. Beek W. J. E.; Wienk M. M.; Kemerink M.; Yang M.; Janssen R. A. J., J. Phys. Chem. B 2005, 109, 9505-9516.
92. Bokel F. A., Sudeep P. K.; Pentzer E.; Emrick T.; Hayward R. C., Macromolecules 2011, 44, 1768-1770.
93. Liao H.C.; Chen S. Y.; Liu D. M., Macromolecules 2009, 42, 6558-6563.
94. Samitsu, S.; Shimomura, T.; Heike, S.; Hashizume, T.; Ito, K., Macromolecules 2008, 41, 8000-8010.
95. Samitsu, S.; Shimomura, T.; Heike, S.; Hashizume, T.; Ito, K., Macromolecules 2010, 43, 7891-7894.
96. He, M.; Zhao, L.; Wang, J.; Han, W.; Yang, Y. L.; Qiu, F.; Lin, Z. Q., ACS Nano 2010, 4, 3241-3247.
97. Zhang, L.; Eisenberg, A., Polym. Adv. Technol. 1998, 9, 677-699.
98. Yu Y.; Che B.; Si Z.; Li L.; Chen W.; Xue G., Synthetic Metals 2005, 150, 271-277.
99. Zhang S.; Pelligra C. I.; Keskar G.; Jiang J.; Majewski P. W.; Taylor A. D.; Lismail-Beigi S.; Pfefferle L. D.; Osuji C. O., Adv. Mater. 2012, 24, 82-87.
100. Ruokolainen J.; Torkkeli M.; Serimaa R.; Vahvaselka S.; Saariaho M.; Brinke G. ten; Ikkala O., Macromolecules 1996, 29, 6621-6628.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65373-
dc.description.abstract研究藉由聚己烷噻吩導電高分子以及新穎的共軛─共軛雙嵌段共聚高分子當結構模板,製作了一系列混成氧化鋅(ZnO)奈米粒子的有機/無機混成系統。本研究中揭露一種簡易的原位合成方法,探討zinc oxide/poly(3-hexylthiophene) (ZnO/P3HT)奈米混成系統和zinc oxide/ poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-hexylthiophene) (ZnO/PPP-b-P3HT) 奈米混成系統的自組裝行為。因此在本實驗中使用醋酸鋅(Zn(CH3COO)2.2H2O)做為前驅物,而高分子P3HT的噻吩官能基能與鋅離子(Zn2+)進行螯合反應,接著藉由薄膜在大氣環境下加熱至200oC三十分鐘以上或者在混合溶液中添加有機鹼tetramethylammonium hydroxide (TMA-OH),使鋅離子轉換為氧化鋅(ZnO)。
氧化鋅奈米粒子/高分子 混成薄膜可由兩種方法製備:第一種方法,首先製備鋅離子/高分子混合溶液後,接著將此溶液利用滴落塗佈方式在基材上使之成膜並在室溫乾燥,最後將基材放置於加熱台上,在空氣中以200oC加熱30分鐘。第二種方法,將TMA-OH加入準備好的鋅離子/高分子混合溶液,接著再將反應完的溶液以滴落塗佈法在基材上使之成膜並在室溫下乾燥。
從FTIR光譜的結果證實,P3HT上的C-S鍵與鋅離子的螯合效果產生化學位移,而UV-visible的吸收光譜也闡述了鋅離子在混合系統中的比例關係,至於氧化鋅奈米粒子/高分子混成系統的結晶度和形態則是分別透過GIWAXS光譜儀和TEM來了解其特性。利用GIWAXS光譜儀確認,成功的合成出氧化鋅奈米粒子,並且高分子在甲苯溶劑下有良好的方向性。經由TEM的型態可看出,因為高分子的噻吩官能基能與鋅離子(Zn2+)有螯合反應,所以利用加熱轉換的氧化鋅奈米粒子排列在高分子奈米線上,再經由退火實驗,能使高分子結晶更好,氧化鋅奈米粒子的結晶變成連續相,此現象有助於高分子與無機物的連續通道,可運用於太陽能元件上。
zh_TW
dc.description.abstractIn this study, we fabricated organic/inorganic hybrid that contains zinc oxide (ZnO) nanoparticles synthesized in the presence of a conducting homopolymer and a novel conducting-conducting di-block copolymer as a structure template for the hybrid system. A simple in-situ synthesis of the self-assembly behavior zinc oxide/poly(3-hexylthiophene) (ZnO/P3HT) nanohybrid systems and zinc oxide/poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-hexylthiophene) (ZnO/PPP-b-P3HT) nanohybrid systems were investigated. We use the zinc acetate dehydrate (Zn(CH3COO)2.2H2O) as a precursor for ZnO nanoparticles and P3HT as the functional host to chelate zinc ion. The chelated Zn2+ was converted into ZnO by heating in the air at 200oC or by adding tetramethylammonium hydroxide (TMA-OH) as the organic base.
The film samples of ZnO/polymer hybrid were prepared by the following two methods. First, we prepared a Zn2+/polymers solution, and then drop casted the Zn2+/polymers solution directly onto substrates. The coated substrates were then heated at 200oC for 30 minutes for characterization. Second, we prepared the Zn2+/polymers solution, and then added TMA-OH into solution for the ZnO synthesis. Immediately, after that we drop casted the solution onto a substrate. From the study of FTIR spectra of the Zn2+/polymers solution, we confirmed that P3HT is chelated with zinc ion. The UV-Visible spectra measurement also illustrated the effect of ZnO nanoparticles ratio for in the hybrid system. The crystallinity and morphology of ZnO nanoparticles/polymer hybrid films were characterized by GIWAXS and transmission electron microscope (TEM). From GIWAXS spectra, the polymer which dissolved in toluene has good orientation and Zn2+ was converted into ZnO by heating in the air successfully. The TEM images show that P3HT was the chelating zinc ion when the film was heated in the air at 200oC, and it can enhance the co-organization crystalline of the P3HT/ZnO nanoparticles hybrid when put the heated film into annealer under inert atmosphere at 200oC for 1 day.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:39:14Z (GMT). No. of bitstreams: 1
ntu-101-R99549015-1.pdf: 5178938 bytes, checksum: cca05fbcd1282f774c08526bf3712473 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝.......................................................I
摘要.....................................................III
Abstract..................................................IV
Contents..................................................VI
List of Figures.........................................VIII
List of Tables...........................................XII
Chapter 1 Introduction.....................................1
Chapter 2 Literature Review................................5
2-1 Introduction of conducting polymer.....................5
2-2 Configuration and synthesis of Poly (alkyl-thiophene) and Grignard Metathesis (GRIM).............................7
2-3 Applications of poly(3-alkyl thiophene)...............13
2-4 Self-assembly of π-conjugated block copolymers.......14
2-5 Self-assembly of P3HT-containing block copolymers.....17
2-6 Synthesis of one-dimensional (1D) ZnO nanostructures..19
2-7 Application of 1D ZnO nanostructures..................20
2-8 In-Situ Synthesis of Polymer/Semiconductor Nanohybrid Using Block Copolymers as Structural Template.............22
Chapter 3 Experimental....................................25
3-1 Materials and Equipments..............................25
3-2 Synthesis of polymer..................................27
3-2-1 Synthesis of poly(-3-hexylowythiophene).............27
3-2-2 Synthesis of P3HT homopolymer.......................28
3-2-3 Synthesis of 1,4-dibromo-2,5-dihexyloxybenzene......28
3-2-4 Synthesis of PPP-b-P3HT block copolymers............30
3-3 In-Situ Bonding Zn2+ via P3HT Polymer as a Template...31
3-4 Preparation of Zn2+/P3HT nanowire.....................32
3-5 In-situ Formation of ZnO Nanoparticles within Polymer Film......................................................33
3-6 Crystalline Co-organization of the ZnO/P3HT Hybrid....35
3-7 In-Situ Synthesis ZnO/PPP-b-P3HT Nanohybrid...........36
3-8 Characterization......................................39
3-8-1 Gel Permeation Chromatography (GPC).................39
3-8-2 Fourier Transfer Infrared Spectra Analysis (FT-IR)..42
3-8-3 Transmission Electron Microscopy (TEM)..............42
3-8-4 Scanning Electron Microscope (SEM)..................42
3-8-5 UV-VIS Spectroscopic Analysis ......................43
3-8-6 Fluorescence Analysis (PL)..........................43
3-8-7 Wide-Angle X-ray Scattering (WAXS)..................43
Chapter 4 Results and Discussion..........................44
4-1 In-Situ Synthesis of ZnO/P3HT Nanohybrid..............44
4-1-1 The FTIR Measurement spectrum.......................44
4-1-2 Morphology of Semiconductor Nanohybrids in dilute solution/thin film........................................46
4-1-3 The Optical properties of Semiconductor Nanohybrid system....................................................56
4-1-4 GIWAXS spectra of Semiconductor Nanohybrids.........61
4-2 In-Situ Synthesis of ZnO/PPP-b-P3HT Nanohybrid........69
4-2-1 The FTIR Measurement spectrum.......................69
4-2-2 Morphology of Semiconductor Nanohybrids in dilute solution/thin film........................................71
4-2-3 The Optical properties of Semiconductor Nanohybrid system....................................................77
4-2-4 GIWAXS spectra of Semiconductor Nanohybrids.........81
Chapter 5 Conclusions.....................................89
Reference.................................................93
Appendix.................................................100
dc.language.isoen
dc.subject聚己烷?吩zh_TW
dc.subject雙共軛雙嵌段共聚高分子zh_TW
dc.subject原位合成zh_TW
dc.subject混成系統zh_TW
dc.subject氧化鋅zh_TW
dc.subjecthybrid systemen
dc.subjectall-conjugated rod-rod copolymeren
dc.subjectP3HTen
dc.subjectin-situen
dc.subjectZnO nanoparticleen
dc.title氧化鋅/聚己烷噻吩高分子與氧化鋅/雙嵌段共聚高分子奈米原位混成系統:自組裝、特性及光電應用之探討zh_TW
dc.titleSelf-Assembly, Characterization and Optoelectronic Applications in In-situ Hybrid Systems of Zinc Oxide/Poly(3-hexylthiophene) and Zinc Oxide/All-conjugated Block Copolymersen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee芮祥鵬,程耀毅,王立義,徐秀福
dc.subject.keyword聚己烷?吩,雙共軛雙嵌段共聚高分子,原位合成,混成系統,氧化鋅,zh_TW
dc.subject.keywordP3HT,all-conjugated rod-rod copolymer,in-situ,hybrid system,ZnO nanoparticle,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2012-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved