請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65370
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張麗冠 | |
dc.contributor.author | Han-Ting Chen | en |
dc.contributor.author | 陳菡亭 | zh_TW |
dc.date.accessioned | 2021-06-16T23:39:04Z | - |
dc.date.available | 2017-08-01 | |
dc.date.copyright | 2012-08-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-26 | |
dc.identifier.citation | Adamson, A. L., and S. Kenney. 2001. Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. J Virol 75 (5):2388-2399.
Ahn, J. H., and G. S. Hayward. 1997. The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol 71 (6):4599-4613. Ahn, J. H., Y. Xu, W. J. Jang, M. J. Matunis, and G. S. Hayward. 2001. Evaluation of interactions of human cytomegalovirus immediate-early IE2 regulatory protein with small ubiquitin-like modifiers and their conjugation enzyme Ubc9. J Virol 75 (8):3859-3872. Allday, M. J., D. H. Crawford, and B. E. Griffin. 1989. Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70 ( Pt 7):1755-1764. Amon, W., and P. J. Farrell. 2005. Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15 (3):149-156. Baba, D., N. Maita, J. G. Jee, Y. Uchimura, H. Saitoh, K. Sugasawa, F. Hanaoka, H. Tochio, H. Hiroaki, and M. Shirakawa. 2005. Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435 (7044):979-982. Baer, R., A. T. Bankier, M. D. Biggin, P. L. Deininger, P. J. Farrell, T. J. Gibson, G. Hatfull, G. S. Hudson, S. C. Satchwell, C. Seguin, and et al. 1984. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310 (5974):207-211. Baines, J. D. 2011. Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends Microbiol 19 (12):606-613. Bian, X. L., G. Rosas-Acosta, Y. C. Wu, and V. G. Wilson. 2007. Nuclear import of bovine papillomavirus type 1 E1 protein is mediated by multiple alpha importins and is negatively regulated by phosphorylation near a nuclear localization signal. J Virol 81 (6):2899-2908. Biggin, M., M. Bodescot, M. Perricaudet, and P. Farrell. 1987. Epstein-Barr virus gene expression in P3HR1-superinfected Raji cells. J Virol 61 (10):3120-3132. Boddy, M. N., K. Howe, L. D. Etkin, E. Solomon, and P. S. Freemont. 1996. PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene 13 (5):971-982. Boggio, R., R. Colombo, R. T. Hay, G. F. Draetta, and S. Chiocca. 2004. A mechanism for inhibiting the SUMO pathway. Mol Cell 16 (4):549-561. Boggio, R., A. Passafaro, and S. Chiocca. 2007. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J Biol Chem 282 (21):15376-15382. Borden, K. L. 2002. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol Cell Biol 22 (15):5259-5269. Boutell, C., D. Cuchet-Lourenco, E. Vanni, A. Orr, M. Glass, S. McFarlane, and R. D. Everett. 2011. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog 7 (9):e1002245. Boutell, C., S. Sadis, and R. D. Everett. 2002. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76 (2):841-850. Branzei, D., J. Sollier, G. Liberi, X. Zhao, D. Maeda, M. Seki, T. Enomoto, K. Ohta, and M. Foiani. 2006. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127 (3):509-522. Burke, A. P., T. S. Yen, K. M. Shekitka, and L. H. Sobin. 1990. Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3 (3):377-380. Cai, X., A. Schafer, S. Lu, J. P. Bilello, R. C. Desrosiers, R. Edwards, N. Raab-Traub, and B. R. Cullen. 2006. Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2 (3):e23. Chang, L. K., Y. H. Lee, T. S. Cheng, Y. R. Hong, P. J. Lu, J. J. Wang, W. H. Wang, C. W. Kuo, S. S. Li, and S. T. Liu. 2004. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279 (37):38803-38812. Chang, L. K., and S. T. Liu. 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28 (20):3918-3925. Chang, P. C., Y. Izumiya, C. Y. Wu, L. D. Fitzgerald, M. Campbell, T. J. Ellison, K. S. Lam, P. A. Luciw, and H. J. Kung. 2010. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J Biol Chem 285 (8):5266-5273. Chang, P. J., Y. S. Chang, and S. T. Liu. 1998a. Characterization of the BcLF1 promoter in Epstein-Barr virus. J Gen Virol 79 ( Pt 8):2003-2006. Chang. 1998b. Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol 72 (6):5128-5136. Chiocca, S. 2007. Viral control of the SUMO pathway: Gam1, a model system. Biochem Soc Trans 35 (Pt 6):1419-1421. Chiocca, S., A. Baker, and M. Cotten. 1997. Identification of a novel antiapoptotic protein, GAM-1, encoded by the CELO adenovirus. J Virol 71 (4):3168-3177. Chiocca, S., V. Kurtev, R. Colombo, R. Boggio, M. T. Sciurpi, G. Brosch, C. Seiser, G. F. Draetta, and M. Cotten. 2002. Histone deacetylase 1 inactivation by an adenovirus early gene product. Curr Biol 12 (7):594-598. Chiu, Y. F., C. P. Tung, Y. H. Lee, W. H. Wang, C. Li, J. Y. Hung, C. Y. Wang, Y. Kawaguchi, and S. T. Liu. 2007. A comprehensive library of mutations of Epstein Barr virus. J Gen Virol 88 (Pt 9):2463-2472. Colombo, R., R. Boggio, C. Seiser, G. F. Draetta, and S. Chiocca. 2002. The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase 1. EMBO Rep 3 (11):1062-1068. Countryman, J., L. Gradoville, S. Bhaduri-McIntosh, J. Ye, L. Heston, S. Himmelfarb, D. Shedd, and G. Miller. 2009. Stimulus duration and response time independently influence the kinetics of lytic cycle reactivation of Epstein-Barr virus. J Virol 83 (20):10694-10709. Crawford, D. H. 2001. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci 356 (1408):461-473. Cuchet-Lourenco, D., C. Boutell, V. Lukashchuk, K. Grant, A. Sykes, J. Murray, A. Orr, and R. D. Everett. 2011. SUMO pathway dependent recruitment of cellular repressors to herpes simplex virus type 1 genomes. PLoS Pathog 7 (7):e1002123. Davies, A. H., R. J. Grand, F. J. Evans, and A. B. Rickinson. 1991. Induction of Epstein-Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. J Virol 65 (12):6838-6844. Deyrieux, A. F., G. Rosas-Acosta, M. A. Ozbun, and V. G. Wilson. 2007. Sumoylation dynamics during keratinocyte differentiation. J Cell Sci 120 (Pt 1):125-136. Di Francesco, P., A. Lisi, S. Rieti, V. Manni, S. Grimaldi, and E. Garaci. 1999. Cocaine potentiates the switch between latency and replication of Epstein-Barr virus in Raji cells. Biochem Biophys Res Commun 264 (1):33-36. Eliopoulos, A. G., J. H. Caamano, J. Flavell, G. M. Reynolds, P. G. Murray, J. L. Poyet, and L. S. Young. 2003. Epstein-Barr virus-encoded latent infection membrane protein 1 regulates the processing of p100 NF-kappaB2 to p52 via an IKKgamma/NEMO-independent signalling pathway. Oncogene 22 (48):7557-7569. Endter, C., B. Hartl, T. Spruss, J. Hauber, and T. Dobner. 2005. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 24 (1):55-64. Endter, C., J. Kzhyshkowska, R. Stauber, and T. Dobner. 2001. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A 98 (20):11312-11317. Epstein, M. A., B. G. Achong, and Y. M. Barr. 1964. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1 (7335):702-703. Everett, R. D. 2001. DNA viruses and viral proteins that interact with PML nuclear bodies. Oncogene 20 (49):7266-7273. Everett, R. D., and M. K. Chelbi-Alix. 2007. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89 (6-7):819-830. Everett, R. D., P. Lomonte, T. Sternsdorf, R. van Driel, and A. Orr. 1999. Cell cycle regulation of PML modification and ND10 composition. J Cell Sci 112 ( Pt 24):4581-4588. Everett, R. D., C. Parada, P. Gripon, H. Sirma, and A. Orr. 2008. Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82 (6):2661-2672. Everett, R. D., M. L. Parsy, and A. Orr. 2009. Analysis of the functions of herpes simplex virus type 1 regulatory protein ICP0 that are critical for lytic infection and derepression of quiescent viral genomes. J Virol 83 (10):4963-4977. Everett, R. D., S. Rechter, P. Papior, N. Tavalai, T. Stamminger, and A. Orr. 2006. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80 (16):7995-8005. Flemington, E., and S. H. Speck. 1990. Identification of phorbol ester response elements in the promoter of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64 (3):1217-1226. Flemington, E. K., A. E. Goldfeld, and S. H. Speck. 1991. Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol 65 (12):7073-7077. Fradet-Turcotte, A., K. Brault, S. Titolo, P. M. Howley, and J. Archambault. 2009. Characterization of papillomavirus E1 helicase mutants defective for interaction with the SUMO-conjugating enzyme Ubc9. Virology 395 (2):190-201. Geiss-Friedlander, R., and F. Melchior. 2007. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8 (12):947-956. Gong, L., B. Li, S. Millas, and E. T. Yeh. 1999. Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448 (1):185-189. Gonzalez-Santamaria, J., M. Campagna, M. A. Garcia, L. Marcos-Villar, D. Gonzalez, P. Gallego, F. Lopitz-Otsoa, S. Guerra, M. S. Rodriguez, M. Esteban, and C. Rivas. 2011. Regulation of vaccinia virus E3 protein by small ubiquitin-like modifier proteins. J Virol 85 (24):12890-12900. Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36 (1):59-74. Greenspan, J. S., D. Greenspan, E. T. Lennette, D. I. Abrams, M. A. Conant, and V. H. Petersen. 1985. Oral viral leukoplakia--a new AIDS-associated condition. Adv Exp Med Biol 187:123-128. Guo, D., M. Li, Y. Zhang, P. Yang, S. Eckenrode, D. Hopkins, W. Zheng, S. Purohit, R. H. Podolsky, A. Muir, J. Wang, Z. Dong, T. Brusko, M. Atkinson, P. Pozzilli, A. Zeidler, L. J. Raffel, C. O. Jacob, Y. Park, M. Serrano-Rios, M. T. Larrad, Z. Zhang, H. J. Garchon, J. F. Bach, J. I. Rotter, J. X. She, and C. Y. Wang. 2004. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36 (8):837-841. Hagemeier, S. R., S. J. Dickerson, Q. Meng, X. Yu, J. E. Mertz, and S. C. Kenney. 2010. Sumoylation of the Epstein-Barr virus BZLF1 protein inhibits its transcriptional activity and is regulated by the virus-encoded protein kinase. J Virol 84 (9):4383-4394. Hannich, J. T., A. Lewis, M. B. Kroetz, S. J. Li, H. Heide, A. Emili, and M. Hochstrasser. 2005. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280 (6):4102-4110. Hardeland, U., R. Steinacher, J. Jiricny, and P. Schar. 2002. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J 21 (6):1456-1464. Hecker, C. M., M. Rabiller, K. Haglund, P. Bayer, and I. Dikic. 2006. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281 (23):16117-16127. Henderson, E. E., and W. K. Long. 1981. Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology 115 (2):237-248. Henle, W., and G. Henle. 1970. Evidence for a relation of Epstein-Barr virus to Burkitt's lymphoma and nasopharyngeal carcinoma. Bibl Haematol (36):706-713. Henson, B. W., E. M. Perkins, J. E. Cothran, and P. Desai. 2009. Self-assembly of Epstein-Barr virus capsids. J Virol 83 (8):3877-3890. Hicke, L., H. L. Schubert, and C. P. Hill. 2005. Ubiquitin-binding domains. Nat Rev Mol Cell Biol 6 (8):610-621. Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419 (6903):135-141. Hoeller, D., N. Crosetto, B. Blagoev, C. Raiborg, R. Tikkanen, S. Wagner, K. Kowanetz, R. Breitling, M. Mann, H. Stenmark, and I. Dikic. 2006. Regulation of ubiquitin-binding proteins by monoubiquitination. Nat Cell Biol 8 (2):163-169. Hofmann, H., S. Floss, and T. Stamminger. 2000. Covalent modification of the transactivator protein IE2-p86 of human cytomegalovirus by conjugation to the ubiquitin-homologous proteins SUMO-1 and hSMT3b. J Virol 74 (6):2510-2524. Homa, F. L., and J. C. Brown. 1997. Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7 (2):107-122. Horwitz, C. A., W. Henle, G. Henle, and H. Schmitz. 1975. Clinical evaluation of patients with infectious mononucleosis and development of antibodies to the R component of the Epstein-Barr virus-induced early antigen complex. Am J Med 58 (3):330-338. Hummel, M., and E. Kieff. 1982. Mapping of polypeptides encoded by the Epstein-Barr virus genome in productive infection. Proc Natl Acad Sci U S A 79 (18):5698-5702. Hurley, J. H., S. Lee, and G. Prag. 2006. Ubiquitin-binding domains. Biochem J 399 (3):361-372. Imai, S., S. Koizumi, M. Sugiura, M. Tokunaga, Y. Uemura, N. Yamamoto, S. Tanaka, E. Sato, and T. Osato. 1994. Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein-Barr virus latent infection protein. Proc Natl Acad Sci U S A 91 (19):9131-9135. Izumiya, Y., T. J. Ellison, E. T. Yeh, J. U. Jung, P. A. Luciw, and H. J. Kung. 2005. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 79 (15):9912-9925. Jensen, R. A., and F. L. Haas. 1963. Electrokinetics and Cell Physiology. Ii. Relationship of Surface Charge to Onset of Bacterial Competence for Genetic Transformation. J Bacteriol 86:79-86. Jiang, J. H., N. Wang, A. Li, W. T. Liao, Z. G. Pan, S. J. Mai, D. J. Li, M. S. Zeng, J. M. Wen, and Y. X. Zeng. 2006. Hypoxia can contribute to the induction of the Epstein-Barr virus (EBV) lytic cycle. J Clin Virol 37 (2):98-103. Johansson, B., G. Klein, W. Henle, and G. Henle. 1970. Epstein-Barr virus (EBV)-associated antibody patterns in malignant lymphoma and leukemia. I. Hodgkin's disease. Int J Cancer 6 (3):450-462. Jones, J. F., S. Shurin, C. Abramowsky, R. R. Tubbs, C. G. Sciotto, R. Wahl, J. Sands, D. Gottman, B. Z. Katz, and J. Sklar. 1988. T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318 (12):733-741. Kallin, B., J. Luka, and G. Klein. 1979. Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. J Virol 32 (3):710-716. Kelly, C., R. Van Driel, and G. W. Wilkinson. 1995. Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76 ( Pt 11):2887-2893. Kerscher, O. 2007. SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8 (6):550-555. Kirchmaier, A. L., and B. Sugden. 1995. Plasmid maintenance of derivatives of oriP of Epstein-Barr virus. J Virol 69 (2):1280-1283. Klein, G., B. Giovanella, A. Westman, J. S. Stehlin, and D. Mumford. 1975. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5 (6):319-334. Kobayashi, S., H. Shibata, I. Kurihara, K. Yokota, N. Suda, I. Saito, and T. Saruta. 2004. Ubc9 interacts with chicken ovalbumin upstream promoter-transcription factor I and represses receptor-dependent transcription. J Mol Endocrinol 32 (1):69-86. Konturek, P. C., S. J. Konturek, and T. Brzozowski. 2006. Gastric cancer and Helicobacter pylori infection. J Physiol Pharmacol 57 Suppl 3:51-65. Lee, G. W., F. Melchior, M. J. Matunis, R. Mahajan, Q. Tian, and P. Anderson. 1998. Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273 (11):6503-6507. Lee, H. R., D. J. Kim, J. M. Lee, C. Y. Choi, B. Y. Ahn, G. S. Hayward, and J. H. Ahn. 2004. Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78 (12):6527-6542. Lee, J. M., H. J. Kang, H. R. Lee, C. Y. Choi, W. J. Jang, and J. H. Ahn. 2003. PIAS1 enhances SUMO-1 modification and the transactivation activity of the major immediate-early IE2 protein of human cytomegalovirus. FEBS Lett 555 (2):322-328. Li, R., L. Wang, G. Liao, C. M. Guzzo, M. J. Matunis, H. Zhu, and S. D. Hayward. 2012. SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 86 (10):5412-5421. Lima, V. P., M. A. de Lima, A. R. Andre, M. V. Ferreira, M. A. Barros, and S. H. Rabenhorst. 2008. H pylori (CagA) and Epstein-Barr virus infection in gastric carcinomas: correlation with p53 mutation and c-Myc, Bcl-2 and Bax expression. World J Gastroenterol 14 (6):884-891. Lin, D. Y., Y. S. Huang, J. C. Jeng, H. Y. Kuo, C. C. Chang, T. T. Chao, C. C. Ho, Y. C. Chen, T. P. Lin, H. I. Fang, C. C. Hung, C. S. Suen, M. J. Hwang, K. S. Chang, G. G. Maul, and H. M. Shih. 2006. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol Cell 24 (3):341-354. Lin, J. C., N. D. Sista, F. Besencon, J. Kamine, and J. S. Pagano. 1991. Identification and functional characterization of Epstein-Barr virus DNA polymerase by in vitro transcription-translation of a cloned gene. J Virol 65 (5):2728-2731. Liu, F. Y., and B. Roizman. 1991. The herpes simplex virus 1 gene encoding a protease also contains within its coding domain the gene encoding the more abundant substrate. J Virol 65 (10):5149-5156. Liu, S. T., W. H. Wang, Y. R. Hong, J. Y. Chuang, P. J. Lu, and L. K. Chang. 2006. Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASxbeta. Virus Res 119 (2):163-170. Lopez-Otin, C., C. Simon-Mateo, L. Martinez, and E. Vinuela. 1989. Gly-Gly-X, a novel consensus sequence for the proteolytic processing of viral and cellular proteins. J Biol Chem 264 (16):9107-9110. Luka, J., B. Kallin, and G. Klein. 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94 (1):228-231. Mahajan, R., C. Delphin, T. Guan, L. Gerace, and F. Melchior. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88 (1):97-107. Marcos-Villar, L., M. Campagna, F. Lopitz-Otsoa, P. Gallego, J. Gonzalez-Santamaria, D. Gonzalez, M. S. Rodriguez, and C. Rivas. 2011. Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2. J Gen Virol 92 (Pt 1):188-194. Marcos-Villar, L., F. Lopitz-Otsoa, P. Gallego, C. Munoz-Fontela, J. Gonzalez-Santamaria, M. Campagna, G. Shou-Jiang, M. S. Rodriguez, and C. Rivas. 2009. Kaposi's sarcoma-associated herpesvirus protein LANA2 disrupts PML oncogenic domains and inhibits PML-mediated transcriptional repression of the survivin gene. J Virol 83 (17):8849-8858. Marusic, M. B., N. Mencin, M. Licen, L. Banks, and H. S. Grm. 2010. Modification of human papillomavirus minor capsid protein L2 by sumoylation. J Virol 84 (21):11585-11589. Maurer, B. A., S. M. Wilbert, and T. Imamura. 1970. Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines. Cancer Res 30 (12):2870-2875. Meluh, P. B., and D. Koshland. 1995. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6 (7):793-807. Miller, G. 1990. The switch between latency and replication of Epstein-Barr virus. J Infect Dis 161 (5):833-844. Miller, R. L., R. Glaser, and F. Rapp. 1977. Studies of an Epstein-Barr virus-induced DNA polymerase. Virology 76 (2):494-502. Minty, A., X. Dumont, M. Kaghad, and D. Caput. 2000. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem 275 (46):36316-36323. Mukhopadhyay, D., and M. Dasso. 2007. Modification in reverse: the SUMO proteases. Trends Biochem Sci 32 (6):286-295. Muller, S., and A. Dejean. 1999. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol 73 (6):5137-5143. Murata, T., N. Hotta, S. Toyama, S. Nakayama, S. Chiba, H. Isomura, T. Ohshima, T. Kanda, and T. Tsurumi. 2010. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 285 (31):23925-23935. Namanja, A. T., Y. J. Li, Y. Su, S. Wong, J. Lu, L. T. Colson, C. Wu, S. S. Li, and Y. Chen. 2012. Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. J Biol Chem 287 (5):3231-3240. Newcomb, W. W., R. M. Juhas, D. R. Thomsen, F. L. Homa, A. D. Burch, S. K. Weller, and J. C. Brown. 2001. The UL6 gene product forms the portal for entry of DNA into the herpes simplex virus capsid. J Virol 75 (22):10923-10932. Newcomb, W. W., B. L. Trus, F. P. Booy, A. C. Steven, J. S. Wall, and J. C. Brown. 1993. Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232 (2):499-511. Novatchkova, M., A. Bachmair, B. Eisenhaber, and F. Eisenhaber. 2005. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. BMC Bioinformatics 6:22. Nutter, L. M., S. P. Grill, J. S. Li, R. S. Tan, and Y. C. Cheng. 1987. Induction of virus enzymes by phorbol esters and n-butyrate in Epstein-Barr virus genome-carrying Raji cells. Cancer Res 47 (16):4407-4412. Okura, T., L. Gong, T. Kamitani, T. Wada, I. Okura, C. F. Wei, H. M. Chang, and E. T. Yeh. 1996. Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. J Immunol 157 (10):4277-4281. Ouyang, J., Y. Shi, A. Valin, Y. Xuan, and G. Gill. 2009. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 34 (2):145-154. Palacios, S., L. H. Perez, S. Welsch, S. Schleich, K. Chmielarska, F. Melchior, and J. K. Locker. 2005. Quantitative SUMO-1 modification of a vaccinia virus protein is required for its specific localization and prevents its self-association. Mol Biol Cell 16 (6):2822-2835. Papouli, E., S. Chen, A. A. Davies, D. Huttner, L. Krejci, P. Sung, and H. D. Ulrich. 2005. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19 (1):123-133. Pennella, M. A., Y. Liu, J. L. Woo, C. A. Kim, and A. J. Berk. 2010. Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 84 (23):12210-12225. Pfander, B., G. L. Moldovan, M. Sacher, C. Hoege, and S. Jentsch. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436 (7049):428-433. Pfeffer, S., M. Zavolan, F. A. Grasser, M. Chien, J. J. Russo, J. Ju, B. John, A. J. Enright, D. Marks, C. Sander, and T. Tuschl. 2004. Identification of virus-encoded microRNAs. Science 304 (5671):734-736. Randow, F., and P. J. Lehner. 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11 (5):527-534. Rangasamy, D., and V. G. Wilson. 2000. Bovine papillomavirus E1 protein is sumoylated by the host cell Ubc9 protein. J Biol Chem 275 (39):30487-30495. Rangasamy, D., K. Woytek, S. A. Khan, and V. G. Wilson. 2000. SUMO-1 modification of bovine papillomavirus E1 protein is required for intranuclear accumulation. J Biol Chem 275 (48):37999-38004. Reichelt, M., L. Wang, M. Sommer, J. Perrino, A. M. Nour, N. Sen, A. Baiker, L. Zerboni, and A. M. Arvin. 2011. Entrapment of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against varicella-zoster virus. PLoS Pathog 7 (2):e1001266. Rogan, S., and S. Heaphy. 2000. The vaccinia virus E3L protein interacts with SUMO-1 and ribosomal protein L23a in a yeast two hybrid assay. Virus Genes 21 (3):193-195. Rosas-Acosta, G., M. A. Langereis, A. Deyrieux, and V. G. Wilson. 2005. Proteins of the PIAS family enhance the sumoylation of the papillomavirus E1 protein. Virology 331 (1):190-203. Rosendorff, A., D. Illanes, G. David, J. Lin, E. Kieff, and E. Johannsen. 2004. EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol 78 (1):367-377. Ryan, J. L., H. Fan, S. L. Glaser, S. A. Schichman, N. Raab-Traub, and M. L. Gulley. 2004. Epstein-Barr virus quantitation by real-time PCR targeting multiple gene segments: a novel approach to screen for the virus in paraffin-embedded tissue and plasma. J Mol Diagn 6 (4):378-385. Sadanari, H., R. Yamada, K. Ohnishi, K. Matsubara, and J. Tanaka. 2005. SUMO-1 modification of the major immediate-early (IE) 1 and 2 proteins of human cytomegalovirus is regulated by different mechanisms and modulates the intracellular localization of the IE1, but not IE2, protein. Arch Virol 150 (9):1763-1782. Saitoh, H., and J. Hinchey. 2000. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275 (9):6252-6258. Salmon, B., and J. D. Baines. 1998. Herpes simplex virus DNA cleavage and packaging: association of multiple forms of U(L)15-encoded proteins with B capsids requires at least the U(L)6, U(L)17, and U(L)28 genes. J Virol 72 (4):3045-3050. Salmon, B., C. Cunningham, A. J. Davison, W. J. Harris, and J. D. Baines. 1998. The herpes simplex virus type 1 U(L)17 gene encodes virion tegument proteins that are required for cleavage and packaging of viral DNA. J Virol 72 (5):3779-3788. Sapetschnig, A., G. Rischitor, H. Braun, A. Doll, M. Schergaut, F. Melchior, and G. Suske. 2002. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21 (19):5206-5215. Sapp, M., and M. Bienkowska-Haba. 2009. Viral entry mechanisms: human papillomavirus and a long journey from extracellular matrix to the nucleus. FEBS J 276 (24):7206-7216. Schreiner, S., P. Wimmer, P. Groitl, S. Y. Chen, P. Blanchette, P. E. Branton, and T. Dobner. 2011. Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 85 (17):8752-8765. Shen, T. H., H. K. Lin, P. P. Scaglioni, T. M. Yung, and P. P. Pandolfi. 2006. The mechanisms of PML-nuclear body formation. Mol Cell 24 (3):331-339. Shen, Z., P. E. Pardington-Purtymun, J. C. Comeaux, R. K. Moyzis, and D. J. Chen. 1996. UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36 (2):271-279. Sherman, G., and S. L. Bachenheimer. 1988. Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163 (2):471-480. Song, J., L. K. Durrin, T. A. Wilkinson, T. G. Krontiris, and Y. Chen. 2004. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101 (40):14373-14378. Speck, S. H., T. Chatila, and E. Flemington. 1997. Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5 (10):399-405. Steinacher, R., and P. Schar. 2005. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr Biol 15 (7):616-623. Stow, N. D. 2001. Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS. J Virol 75 (22):10755-10765. Sun, H., J. D. Leverson, and T. Hunter. 2007. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26 (18):4102-4112. Takada, K., and Y. Ono. 1989. Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63 (1):445-449. Takahashi, H., S. Hatakeyama, H. Saitoh, and K. I. Nakayama. 2005. Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J Biol Chem 280 (7):5611-5621. Tavalai, N., and T. Stamminger. 2008. New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783 (11):2207-2221. Thurlow, J. K., F. J. Rixon, M. Murphy, P. Targett-Adams, M. Hughes, and V. G. Preston. 2005. The herpes simplex virus type 1 DNA packaging protein UL17 is a virion protein that is present in both the capsid and the tegument compartments. J Virol 79 (1):150-158. Tovey, M. G., G. Lenoir, and J. Begon-Lours. 1978. Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276 (5685):270-272. Trus, B. L., W. W. Newcomb, F. P. Booy, J. C. Brown, and A. C. Steven. 1992. Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc Natl Acad Sci U S A 89 (23):11508-11512. Tsurumi, T., T. Daikoku, R. Kurachi, and Y. Nishiyama. 1993. Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67 (12):7648-7653. Uchimura, Y., M. Nakamura, K. Sugasawa, M. Nakao, and H. Saitoh. 2004. Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331 (1):204-206. Ulrich, H. D. 2005. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15 (10):525-532. Van Damme, E., and X. Van Ostade. 2012. Crosstalk between viruses and PML nuclear bodies: a network-based approach. Front Biosci 17:2910-2920. Vroman, B., J. Luka, M. Rodriguez, and G. R. Pearson. 1985. Characterization of a major protein with a molecular weight of 160,000 associated with the viral capsid of Epstein-Barr virus. J Virol 53 (1):107-113. Wang, L., S. L. Oliver, M. Sommer, J. Rajamani, M. Reichelt, and A. M. Arvin. 2011a. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog 7 (8):e1002157. Wang, W. H., L. K. Chang, and S. T. Liu. 2011b. Molecular interactions of Epstein-Barr virus capsid proteins. J Virol 85 (4):1615-1624. Weiss, L. M., L. A. Movahed, R. A. Warnke, and J. Sklar. 1989. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 320 (8):502-506. Wimmer, P., S. Schreiner, and T. Dobner. 2012. Human pathogens and the host cell SUMOylation system. J Virol 86 (2):642-654. Wimmer, P., S. Schreiner, R. D. Everett, H. Sirma, P. Groitl, and T. Dobner. 2010. SUMO modification of E1B-55K | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65370 | - |
dc.description.abstract | Epstein-Barr virus是人類第四型皰疹病毒,病毒外殼由162個次蛋白衣 (capsomer)組合而成正二十面體 (icosahedron)。EB病毒外殼由主要外鞘蛋白質VCA (major capsid protein)與次要外鞘蛋白質BDLF1和BORF1 (minor capsid protein)組成,兩分子的BDLF1與一分子的BORF1組成三聚體 (triplex),連結VCA 形成的五聚體或六聚體以組成次蛋白衣,並由具有NLS的BORF1分別將BDLF1或VCA帶入核內進行病毒顆粒的組裝。在病毒成熟的過程中,外鞘蛋白質的組裝是非常重要的一環,卻是溶裂循環中最少被研究的部分。SUMO (small ubiquitin-like modifier) 以共價鍵結方式連接在目標蛋白質上是一種轉譯後修飾,參與許多蛋白質的功能調控,包括蛋白質在細胞中分佈的位置、轉錄活性、穩定度及與其他蛋白質的交互作用等。本研究首先發現,BDLF1與BORF1皆受到SUMO蛋白質共價鍵修飾,接著利用GST pull-down證明BDLF1利用其N端的SUMO-interaction motifs (SIMs)與SUMO蛋白質結合;以BDLF1的SIM突變株進行功能性分析後發現,SIM會增加BDLF1受SUMO蛋白質的修飾、降低受泛素化的程度,同時增進BDLF1的蛋白質穩定性;最後利用螢光顯微鏡分析則發現,當BDLF1的SIM突變會改變BDLF1與BORF1的分佈,所以BDLF1的SIM可能在EB病毒顆粒的組裝上扮演重要的角色。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV), also called human herpesvirus 4 (HHV-4), contains a common icosahedral structure with 162 capsomers. The capsids of EBV contain major capsid protein VCA and minor capsid proteins, BDLF1 and BORF1. The capsomers are composed of VCA pentamers or hexamers, which are linked together by triplexes that are formed by two copies of BDLF1 and one copy of BORF1. During the capsid assembly, BORF1, which exhibits nuclear localization signal sequence (NLS) brings VCA and BDLF1 into the nuclei. Assembly of capsid is required for the development of mature EBV virion but it is nevertheless the must unknown part of EBV lytic cycle. Targets covently attached by small ubiquitin-like modifier (SUMO) proteins is a kind of post-translational modification which involves in diverse functions of proteins including cellular localization, stability, transcriptional activity and protein-protein interaction. This study demonstrates that minor capsid proteins BDLF1 and BORF1 are both SUMOylated. A GST pulldown study identifies BDLF1 interacts noncolvently with SUMO through SUMO-interaction motifs (SIM) in the N-terminal region of BDLF1. Functional analysis of BDLF1 SIM mutants revealed that SIM integrity is required for increasing the SUMOylation level, decreasing the ubiquitination level as well as maintaining the stability of BDLF1. Futhermore, immunofluorescence analysis shows that BDLF1 SIM mutants exhibit different pattern with the colocalization of wt-BDLF1 and BORF1. These results indicate the SIM motifs in BDLF1 are likely to have a key function in the EBV capsid assembly. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:39:04Z (GMT). No. of bitstreams: 1 ntu-101-R99b22046-1.pdf: 3757444 bytes, checksum: 02ef87cf05dc9ed4251b62496eeca768 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 II
Abstract III 常用縮寫表 IV 目錄 V 前言 1 一、 EB病毒 (Epstein-Barr virus, EBV) 1 二、 EB病毒的生活史 1 三、 EB病毒的基因體 2 四、 第一型簡單皰疹病毒 (herpes simplex virus type 1, HSV-1)的外鞘殼體 3 五、 EB病毒的外鞘殼體 4 六、 類泛素 (small ubiquitin-like modifier, SUMO) 5 七、 SUMO-interacting motif (SIM) 6 八、 DNA病毒與SUMO修飾系統之間的關係 9 (一) 腺病毒科 9 (二) 皰疹病毒科 10 (三) 乳突病毒科 12 (四) 痘病毒科 13 研究目的 14 材料與方法 15 一、 大腸桿菌的轉型作用與質體 (transformation and plasmid) 15 二、 細胞株的培養 (cell culture) 15 三、 細胞轉染 (transfection) 15 四、 蛋白質的誘導表現 16 五、 西方點墨分析 (western blot analysis) 16 六、 Glutathione S-transferase (GST) pull down assay 16 七、 免疫沉澱分析 (Immunoprecipitation) 16 八、 免疫螢光染色 (Immumofluorescence) 17 九、 變性免疫沉澱法 (Denature-IP) 17 十、 即時定量聚合酶連鎖反應 (Quantitative real-time polymerase chain reaction, Q PCR) 17 結果 19 一、 EB病毒次要外鞘蛋白BDLF1會受SUMO的共價鍵修飾 19 二、 EB病毒次要外鞘蛋白BORF1受SUMO的共價鍵修飾 19 三、 SUMO會增強BDLF1與BORF1的結合 20 四、 BDLF1具有SUMO-interaction motifs (SIM) 20 五、 SIM會增加BDLF1受SUMO蛋白質的修飾 21 六、 SIM會影響BDLF1的穩定性 21 七、 SIM會影響BDLF1與 BORF1分佈的位置 22 討論 23 圖表 29 表一、本研究所用到的質體。 29 表二、本研究使用之抗體。 31 圖一、BDLF1會受SUMO的共價鍵修飾。 32 圖二、BDLF1及BORF1在生物體內皆會受SUMO的共價鍵修飾。 33 圖三、SUMO會增強BDLF1與BORF1的結合。 34 圖四、BDLF1具有SIMs。 35 圖五、SIM會增加BDLF1受SUMO蛋白質的修飾。 36 圖六、SIM會影響BDLF1的穩定性。 37 圖七、SIM會影響BDLF1與 BORF1分佈的位置。 39 附錄 40 附錄一、EB病毒感染人類的途徑。 40 附錄二、EB病毒的生活史。 41 附錄三、HSV-1病毒顆粒的組裝過程。 42 附錄四、EB病毒的結構及外鞘蛋白質。 43 附錄五、泛素化與SUMO蛋白質的共價修飾過程。 44 附錄六、SIM序列與SUMO蛋白質交互作用。 45 附錄七、SIM-SUMO的結合影響蛋白質功能。 46 附錄八、mSIM1與mSIM2仍然可以與BORF1結合。 47 附錄九、SUMOylation影響蛋白質功能的基本機制。 47 附錄十、SIM可能會影響BDLF1形成同型二聚體的能力。 48 附錄十一、SIM突變會降低病毒顆粒生成的數目。 49 參考文獻 50 | |
dc.language.iso | zh-TW | |
dc.title | Small Ubiquitin-like Modifier蛋白質對Epstein-Barr病毒外鞘蛋白質BDLF1的調控 | zh_TW |
dc.title | Regulation of Epstein-Barr Virus Capsid Protein BDLF1 by Small Ubiquitin-like Modifier Proteins | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉世東,張沛鈞,張世宗 | |
dc.subject.keyword | 人類第四型皰疹病毒,小類泛素,外鞘蛋白質, | zh_TW |
dc.subject.keyword | Epstein-Barr virus,SUMO,BDLF1, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-26 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。