請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65361完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Agnes Lee | en |
| dc.contributor.author | 李妍儀 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:38:36Z | - |
| dc.date.available | 2012-08-09 | |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | Bibliography
[1] World Diabetes Foundation. http://www.worlddiabetesfoundation. org/composite-35.htm, 2012. [2] A.D.A.M. http://www.healthcentral.com/common/images/1/ 17152_11862_5.jpg. [3] UGent-IMEC-KULeuven. Glucosens mid-term report: Enabling technologies for continuous glucose monitoring using implantable single-chip optical sensors. 2011. [4] C.K. Mathews, K.E.Van Holde, and K.F. van Holde. The benjamin/cummings series in life sciences and chemistry. Biochemistry, pages 784–789, 1990. [5] J.A. Tamada and M.J. Tierney. New monitors help fight the long-term complications of diabetes. IEEE Spectrum, pages 52–57, April 2002. [6] Hobbie. Intermediate Physics for Advance Biology. Wiley press, 1978. [7] D.R. Lide. Handbook of Chemistry and Physics. CRC press. [8] A.K. Amerov, J. Chen, and M.A. Arnold. Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum. Applied Spectroscopy, 58(10):1195–1204, 1994. [9] Apollo Inc. APSS apollo application note on micro ring resonator. ((905)-524- 3030), 2003. [10] J. Crank. The Mathematics of Diffusion. Clarendon Press, 1975. [11] K. De Vos. Label-free Silicon Photonics Biosensor Platform with Microring Resonators. PhD thesis, Ghent University, 2010. [12] S.K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193- nm optical lithography. Lightwave Technology, 2009. [13] H. Su and X.G. Huang. Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions. Sensors and Actuators B: Chemical, 126 (2):579 – 582, 2007. [14] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S.K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets. Silicon microring resonators. Laser Photonics Review, 6(1):47–73, 2012. [15] M. Bass, C. DeCusatis, J. Enoch, and V. Lakshminarayanan. Handbook of Optics, volume 4. Optical Society of America, 2009. [16] A.C. Turner, C. Manolatou, B.S. Schmidt, M. Lipson, M.A. Foster, J.E. Sharping, and A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Optics Express, 14(10):4357–4362, 2006. [17] E. Dulkeith, F. Xia, L. Schares, W.M.J. Green, and Y.A. Vlasov. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Optics Express, 14 (9):3853–3863, 2006. [18] P. Bienstman. Biophotonics course. Ghent University, 2011. [19] H. Becker and C. Gartner. Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 390(1):89–111, 2008. [20] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A. Schueller, and G. M. Whitesides. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 21(1):27–40, 2000. [21] Handbook of SemiconductorWafer Cleaning Technology – Science, Technology, and Applications. William Andrew Publishing/Noyes, 1993. [22] F. Hua, A. Gaur, Y. Sun, M. Word, N. Jin, I. Adesida, M. Shim, A. Shim, and J.A. Rogers. Processing dependent behavior of soft imprint lithography on the 1-10-nm scale. Nanotechnology, IEEE Transactions on, 5(3):301–308, May 2006. [23] COMSOL. http://www.comsol.com/, 2012. [24] COMSOL. User’s guide. 2011. [25] P. Schiebener, J. Straub, J.M.H. Levelt Sengers, and J.S. Gallagher. Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data, 19(3):677–717, 1990. [26] K.V. Larin, T. Akkin, R.O. Esenaliev, M. Motamedi, and T.E. Milner. Phasesensitive optical low-coherence reflectometry for the detection of analyte concentrations. Applied Optics, 43(17):3408–3414, June 2004. [27] Rheodyne. Manual sample injector: Operating instructions for models 7725(i), 9725(i), 3725(i)-038, 3725(i), and 9125. [28] V. Padgaonkar. Thermal effects in silicon based resonant cavity devices. NNIN REU Research Accomplishments, pages 98–99, 2004. [29] U. Guia, K. Ghia, and C. Shin. High-Re solutions for incompressible flow using the navier-stokes equations and a multigrid method. Journal of Comput. Phys., 48: 387–411, 1982. [30] http://en.wikipedia.org, 2012. [31] R. Sun, P. Dong, N.N. Feng, C.Y. Hong1, J. Michel1, M. Lipson, and L. Kimerling. Horizontal single and multiple slot waveguides: optical transmission at wavelength = 1550 nm. Optics express, 15(26):17967–17972, 2007. [32] Y. Hori, T. Yasui, and T. Araki. Optical glucose monitoring based on femtosecond two-color pulse interferometry. Optical Review, 13(1):29–33, 2006. [33] T.S. Ursell. The diffusion equation– a multi-dimensional tutorial. 2007. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65361 | - |
| dc.description.abstract | 本論文提出了利用擴散原理於微流控光學矽晶片上量測血糖濃度差別的方法。本論文研究了兩種擴散情形:單純擴散情形以及系統周圍外加水流(流動率10 ul/min)的擴散情形。此兩種情形皆經過COMSOL模擬和實際實驗比較。本實驗利用一含有四組微環共振腔的光學矽晶片做為量測工具。根據這些微環共振腔的分佈情形,實驗設計了微流管道與此矽晶片結合,以至於管道內流動的溶液可以通過這些微環共振腔,達到量測液體折射率變化的目的。本實驗所設計的微流管道包含一流動管道及一擴散管道,流動管道內可以控制流動的溶液濃度,擴散管道一端開口連接流動管道,其餘三端封閉,此情形可以確保在擴散管道內粒子的移動以擴散為主。在擴散管道內的微環共振腔偵測折射率的變化,達到觀察擴散管道內擴散情形的變化。實驗結果發現,單純擴散情形所得到的擴散常數8.8*10^(-10) m^2/s與文獻上的值9.4*10^(-10) m^2/s非常接近;而外加水流的擴散情形則比理論模擬結果快很多,此現象可用頂蓋驅動方腔流解釋之。 | zh_TW |
| dc.description.abstract | This thesis presents a glucose sensing method on a miniature optofluidic silicon chip based on the idea of diffusion. Two cases of diffusion, one without external flow and one with an external flow rate of 10 ul/min are analyzed both theoretically by COMSOL simulation and experimentally. The experiment utilized an silicon on insulator (SOI) chip containing 4 sets of microring
resonators. The SOI chip was integrated with designed microfluidic channels, including a flow channel and a diffusion channel. A flow with glucose concentration was imported and exported through the flow channel. The diffusion channel was designed with three impermeable boundaries and one open boundary connected to the flow channel. In this case the glucose particles could penetrate through the diffusion channel only through diffusion. The microring resonators lied within the diffusion channel and detected the diffusion effect of the system. In the case without flow, the diffusion coefficient extracted from the experimental result is 8.8*10^(-10) m^2/s, which is close to the literature value 9.4*10^(-10) m^2/s. The diffusion speed obtained in the case with flow is higher than that in the theoretical simulation because of the driven convection in the lid-driven cavity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:38:36Z (GMT). No. of bitstreams: 1 ntu-101-R98941009-1.pdf: 3054420 bytes, checksum: c7e14bf6f5e67c5f40f58fe591da8640 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
口試委員審定書i Acknowledgments ii 中文摘要v Abstract vii List of Acronyms ix List of Symbols x List of figures xvi List of tables xix 1 Introduction 1 2 Theory of glucose sensing 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Transmission spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Transmission spectra of water and glucose . . . . . . . . . . . . . 9 2.3 Detection principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Dual beam detection . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Evanescent sensor . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Ring resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 The diffusion equations . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Solution when the diffusion coefficient is constant by method of Laplace transform . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Transfer function model . . . . . . . . . . . . . . . . . . . . . . 24 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 Literature review 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Evanescent field sensing with SOI microring resonators . . . . . . . . . . 28 3.2.1 SOI microring resonators . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Spectral characteristics . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.3 Finesse and Q-factor . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2.4 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 Fabrication of making PDMS microfluidic channels . . . . . . . . 37 3.3.3 Integration with SOI chips . . . . . . . . . . . . . . . . . . . . . 41 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4 Simulation experiments with COMSOL Multiphysics 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Simulation software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2.1 COMSOL Multiphysics . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Simulation design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Physics models . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 Decisive parameters . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3.3 Designed structures . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.1 Constant input concentration . . . . . . . . . . . . . . . . . . . . 50 4.4.2 Varying input concentration . . . . . . . . . . . . . . . . . . . . 52 4.4.3 Diffusion with flow . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5.1 Diffusion speed . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.5.2 Transfer function model . . . . . . . . . . . . . . . . . . . . . . 55 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Experimental design and set-up 59 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 PDMS microfluidic channels . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.1 Silicon on chip . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2.2 Performance of SOI ring resonators . . . . . . . . . . . . . . . . 64 5.2.3 Contact mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.1 Camera set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6 Experimental results 75 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.2 Spectrum detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3 Bare chip measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1 Microring resonators on SOI . . . . . . . . . . . . . . . . . . . . 77 6.3.2 Step response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.4 Measurements with microfluidic channels . . . . . . . . . . . . . . . . . 80 6.4.1 Valve behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.4.2 Diffusion without flow . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.3 Diffusion with flow . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5.1 Glucose adsorption . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.5.2 Diffusion coefficient . . . . . . . . . . . . . . . . . . . . . . . . 87 6.5.3 Branch flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.5.4 Hypothesis for the faster diffusion speed . . . . . . . . . . . . . . 90 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Conclusions 95 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Appendix A 98 Bibliography 100 | |
| dc.language.iso | en | |
| dc.subject | 血糖偵測 | zh_TW |
| dc.subject | 擴散 | zh_TW |
| dc.subject | 微環共振腔 | zh_TW |
| dc.subject | 微流 | zh_TW |
| dc.subject | SOI | zh_TW |
| dc.subject | Microfluidics | en |
| dc.subject | Glucose sensing | en |
| dc.subject | Diffusion | en |
| dc.subject | Microring resonator | en |
| dc.subject | SOI | en |
| dc.title | 應用微流控光學矽晶片量測血糖濃度差別之研究 | zh_TW |
| dc.title | Glucose Sensing on an Optofluidic Silicon Chip | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鼎偉,徐世祥 | |
| dc.subject.keyword | 血糖偵測, 擴散, 微環共振腔, 微流, SOI, | zh_TW |
| dc.subject.keyword | Glucose sensing, Diffusion, Microring resonator, Microfluidics, SOI, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
