請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65354完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張芳嘉(Fang-Chia Chang) | |
| dc.contributor.author | I-Feng Kao | en |
| dc.contributor.author | 高儀楓 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:38:13Z | - |
| dc.date.available | 2013-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | 1. Aggleton JP, Brown MW. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci., 22(3), 425-444.
2. Aggleton JP, Hunt PR, Nagle S, Neave N. (1996). The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat. Behav Brain Res., 81(1-2), 189-198. 3. Aggleton JP, O'Mara SM, Vann SD, Wright NF, Tsanov M, Erichsen JT. (2010). Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions. Eur J Neurosci., 31(12), 2292-2307. 4. Aggleton JP, Sahgal A. (1993). The contribution of the anterior thalamic nuclei to anterograde amnesia. Neuropsychologia., 31(10), 1001-1019. 5. Al-Otaibi FA, Hamani C, Lozano AM. (2011). Neuromodulation in epilepsy. Neurosurgery., 69(4), 957-979. 6. Andrade DM, Zumsteg D, Hamani C, Hodaie M, Sarkissian S, Lozano AM, Wennberg RA. (2006). Long-term follow-up of patients with thalamic deep brain stimulation for epilepsy. Neurology., 66(10), 1571-1573. 7. Badawy RA, Harvey AS, Macdonell RA. (2009). Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy - part 1. J Clin Neurosci., 16(3), 355-365. 8. Badawy RA, Harvey AS, Macdonell RA. (2009). Cortical hyperexcitability and epileptogenesis: Understanding the mechanisms of epilepsy - part 2. J Clin Neurosci., 16(4), 485-500. 9. Benabid AL, Minotti L, Koudsie A, de Saint Martin A, Hirsch E. (2002). Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report. Neurosurgery., 50(6), 1385-1391. 10. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshe SL, Nordli D, Plouin P, Scheffer IE. (2010). Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia., 51(4), 676-685. 11. Bittencourt S, Dubiela FP, Queiroz C, Covolan L, Andrade D, Lozano A, Mello LE, Hamani C. (2010). Microinjection of GABAergic agents into the anterior nucleus of the thalamus modulates pilocarpine-induced seizures and status epilepticus. Seizure., 19(4), 242-246. 12. Boon P, Vonck K, De Herdt V, Van Dycke A, Goethals M, Goossens L, Van Zandijcke M, De Smedt T, Dewaele I, Achten R, Wadman W, Dewaele F, Caemaert J,Van Roost D. (2007). Deep brain stimulation in patients with refractory temporal lobe epilepsy. Epilepsia., 48(8), 1551-1560. 13. Byatt G, Dalrymple-Alford JC. (1996). Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behav Neurosci., 110(6), 1335-1348. 14. Chabardes S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. (2002). Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord., 4 Suppl 3, S83-93. 15. Chkhenkeli SA and Chkhenkeli IS. (1997). Effects of therapeutic stimulation of nucleus caudatus on epileptic electrical activity of brain in patients with intractable epilepsy. Stereotact Funct Neurosurg., 69(1-4 Pt 2), 221-224. 16. Chkhenkeli SA, Sramka M, Lortkipanidze GS, Rakviashvili TN, Bregvadze ESh, Magalashvili GE, Gagoshidze TSh, Chkhenkeli IS. (2004). Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin Neurol Neurosurg., 106(4), 318-329. 17. Cooper IS, Amin I, Gilman S. (1973). The effect of chronic cerebellar stimulation upon epilepsy in man. Trans Am Neurol Assoc., 98, 192-196. 18. Cooper IS, Upton AR, Amin I. (1980). Reversibility of chronic neurologic deficits. Some effects of electrical stimulation of the thalamus and internal capsule in man. Appl Neurophysiol., 43(3-5), 244-258. 19. Covolan L, Mello LE. (2000). Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res., 39(2), 133-152. 20. Curia G, Longo D, Biagini G, Jones RS, Avoli M. (2008). The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods., 172(2), 143-157. 21. Boison D. (2008). The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol., 84(3), 249-262. 22. Davis R, Emmonds SE. (1992). Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg., 58(1-4), 200-208. 23. de Curtis M, Avanzini G. (2001). Interictal spikes in focal epileptogenesis. Prog Neurobiol., 63, 541-567. 24. Dudek FE, Spitz M. (1997). Hypothetical mechanisms for the cellular and neurophysiologic basis of secondary epileptogenesis: proposed role of synaptic reorganization. J Clin Neurophysiol., 14(2), 90-101. 25. Eddy CM, Rickards HE, Cavanna AE. (2012). Behavioral adverse effects of antiepileptic drugs in epilepsy. J Clin Psychopharmacol., 32(3), 362-375. 26. Feddersen B, Vercueil L, Noachtar S, David O, Depaulis A, Deransart C. (2007). Controlling seizures is not controlling epilepsy: a parametric study of deep brain stimulation for epilepsy. Neurobiol Dis., 27(3), 292-300. 27. Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, Oommen K, Osorio I, Nazzaro J, Labar D, Kaplitt M, Sperling M, Sandok E, Neal J, Handforth A, Stern J,DeSalles A, Chung S, Shetter A, Bergen D, Bakay R, Henderson J, French J, Baltuch G, Rosenfeld W, Youkilis A, Marks W, Garcia P, Barbaro N, Fountain N,Bazil C, Goodman R, McKhann G, Babu Krishnamurthy K, Papavassiliou S, Epstein C, Pollard J, Tonder L, Grebin J, Coffey R, Graves N; SANTE Study Group. Collaborators (75). (2010). Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia., 51(5), 899-908. 28. Fisher RS, Uematsu S, Krauss GL, Cysyk BJ, McPherson R, Lesser RP, Gordon B, Schwerdt P, Rise M. (1992). Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia., 33(5), 841-851. 29. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr. (2005). Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia., 46(4), 470-472. 30. Fountas KN, Kapsalaki E, Hadjigeorgiou G. (2010). Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review. Neurosurg Focus., 29(2), E8. 31. Gao F, Guo Y, Zhang H, Wang S, Wang J, Wu JM, Chen Z, Ding MP. (2009). Anterior thalamic nucleus stimulation modulates regional cerebral metabolism: an FDG-MicroPET study in rats. Neurobiol Dis., 34(3), 477-483. 32. Gonzalo-Ruiz A, Lieberman AR, Sanz-Anquela JM. (1995a). Organization of serotoninergic projections from the raphe nuclei to the anterior thalamic nuclei in the rat: a combined retrograde tracing and 5-HT immunohistochemical study. J Chem Neuroanat., 8(2), 103-115. 33. Gonzalo-Ruiz A, Sanz-Anquela MJ, Lieberman AR. (1995b). Cholinergic projections to the anterior thalamic nuclei in the rat: a combined retrograde tracing and choline acetyl transferase immunohistochemical study. Anat Embryol (Berl). , 192(4), 335-349. 34. Halpern CH, Samadani U, Litt B, Jaggi JL, Baltuch GH. (2008). Deep brain stimulation for epilepsy. Neurotherapeutics., 5(1), 59-67. 35. Hamani C, Dubiela FP, Soares JC, Shin D, Bittencourt S, Covolan L, Carlen PL, Laxton AW, Hodaie M, Stone SS, Ha Y, Hutchison WD, Lozano AM, Mello LE,Oliveira MG. (2010b). Anterior thalamus deep brain stimulation at high current impairs memory in rats. Exp Neurol., 225(1), 154-162. 36. Hamani C, Ewerton FI, Bonilha SM, Ballester G, Mello LE, Lozano AM. (2004). Bilateral anterior thalamic nucleus lesions and high-frequency stimulation are protective against pilocarpine-induced seizures and status epilepticus. Neurosurgery., 54(1), 191-195. 37. Hamani C, Ewerton FI, Marcolin de Almeida F, Bonilha SM, Covolan L, Fantin Cavarsan C, Ballester G, Mello LE, Lozano AM. (2009). Bilateral anterior thalamic nucleus lesions are not protective against seizures in chronic pilocarpine epileptic rats. Stereotact Funct Neurosurg., 87(3), 143-147. 38. Hamani C, Hodaie M, Chiang J, del Campo M, Andrade DM, Sherman D, Mirski M, Mello LE, Lozano AM. (2008). Deep brain stimulation of the anterior nucleus of the thalamus: effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Res., 78(2-3), 117-123. 39. Hamani C, Nobrega JN, Lozano AM. (2010a). Deep brain stimulation in clinical practice and in animal models. Clin Pharmacol Ther., 88(4), 559-562. 40. Hamani C, Stone SS, Garten A, Lozano AM, Winocur G. (2011). Memory rescue and enhanced neurogenesis following electrical stimulation of the anteriorthalamus in rats treated with corticosterone. Exp Neurol., 232(1), 100-104. 41. Henderson JM, O'Sullivan DJ, Pell M, Fung VS, Hely MA, Morris JG, Halliday GM. (2001). Lesion of thalamic centromedian--parafascicular complex after chronic deep brain stimulation. Neurology., 56(11), 1576-1579. 42. Henderson JM, Pell M, O'Sullivan DJ, McCusker EA, Fung VS, Hedges P, Halliday GM. (2002). Postmortem analysis of bilateral subthalamic electrode implants in Parkinson's disease. Mov Disord., 17(1), 133-137. 43. Hodaie M, Wennberg RA, Dostrovsky JO, Lozano AM. (2002). Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia., 43(6), 603-608. 44. Jarraya B, Bonnet AM, Duyckaerts C, Houeto JL, Cornu P, Hauw JJ, Agid Y. (2003). Parkinson's disease, subthalamic stimulation, and selection of candidates: a pathological study. Mov Disord., 18(12), 1517-1520. 45. Jobst BC, Darcey TM, Thadani VM, Roberts DW. (2010). Brain stimulation for the treatment of epilepsy. Epilepsia., 51 Suppl 3, 88-92. 46. Kerrigan JF, Litt B, Fisher RS, Cranstoun S, French JA, Blum DE, Dichter M, Shetter A, Baltuch G, Jaggi J, Krone S, Brodie M, Rise M, Graves N. (2004). Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia., 45(4), 346-354. 47. Krauss GL, Fisher RS. (1993). Cerebellar and thalamic stimulation for epilepsy. Adv Neurol., 63, 231-245. 48. Kwan P, Schachter SC, Brodie MJ. (2011). Drug-resistant epilepsy. N Engl J Med., 365(10), 919-926. 49. Lado FA. (2006). Chronic bilateral stimulation of the anterior thalamus of kainite-treated rats increases seizure frequency. Epilepsia., 47(1), 27-32. 50. Lehmkuhle MJ, Thomson KE, Scheerlinck P, Pouliot W, Greger B, Dudek FE. (2009). A simple quantitative method for analyzing electrographic status epilepticus in rats. J Neurophysiol., 101(3), 1660-1670. 51. Levy LF and Auchterlonie WC. (1979). Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia., 20(3), 235-245. 52. Lim SN, Lee ST, Tsai YT, Chen IA, Tu PH, Chen JL, Chang HW, Su YC, Wu T. (2007). Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: a long-term follow-up study. Epilepsia., 48(2), 342-347. 53. Dichter MA. (2009). Emerging concepts in the pathogenesis of epilepsy and epileptogenesis. Arch Neurol., 66(4), 443-447. 54. Majores M, Schoch S, Lie A, Becker AJ. (2007). Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue. Epilepsia., 48 Suppl 2, 4-12. 55. Walker MC. (2011). The potential of brain stimulation in status epilepticus. Epilepsia., 52 Suppl 8, 61-63. 56. Mirski MA and Ferrendelli JA. (1984). Interruption of the mammillothalamic tract prevents seizures in guinea pigs. Science., 226(4670), 72-74. 57. Mirski MA, Rossell LA, Terry JB, Fisher RS. (1997). Anticonvulsant effect of anterior thalamic high frequency electrical stimulation in the rat. Epilepsy Res., 28(2), 89-100. 58. Mirski MA, Ziai WC, Chiang J, Hinich M, Sherman D. (2009). Anticonvulsant serotonergic and deep brain stimulation in anterior thalamus. Seizure., 18(1), 64-70. 59. Nagao T, Alonso A, Avoli M. (1996). Epileptiform activity induced by pilocarpine in the rat hippocampal-entorhinal slice preparation. Neuroscience., 72(2), 399-408. 60. Nishida N, Huang ZL, Mikuni N, Miura Y, Urade Y, Hashimoto N. (2007). Deep brain stimulation of the posterior hypothalamus activates the histaminergic system to exert antiepileptic effect in rat pentylenetetrazol model. Exp Neurol., 205(1), 132-144. 61. Oh YS, Kim HJ, Lee KJ, Kim YI, Lim SC, Shon YM. (2012). Cognitive improvement after long-term electrical stimulation of bilateral anterior thalamic nucleusin refractory epilepsy patients. Seizure., 21(3), 183-187. 62. Osorio I, Overman J, Giftakis J, Wilkinson SB. (2007). High frequency thalamic stimulation for inoperable mesial temporal epilepsy. Epilepsia., 48(8), 1561-1571. 63. Paxinos G. (2004). The Rat Nervous System (3 ed.): Academic Press. 64. Paxinos G, Watson C. (1998). The Rat Brain in Stereotaxic Coordinates (4 ed.): Academic Press. 65. Pilitsis JG, Chu Y, Kordower J, Bergen DC, Cochran EJ, Bakay RA. (2008). Postmortem study of deep brain stimulation of the anterior thalamus: case report. Neurosurgery., 62(2), E530-532. 66. Priel MR and Albuquerque EX. (2002). Short-term effects of pilocarpine on rat hippocampal neurons in culture. Epilepsia., 43 Suppl 5, 40-46. 67. Ribak CE, Bradburne RM, Harris AB. (1982). A preferential loss of GABAergic, symmetric synapses in epileptic foci: a quantitative ultrastructural analysis of monkey neocortex. J Neurosci., 2(12), 1725-1735. 68. Saillet S, Langlois M, Feddersen B, Minotti L, Vercueil L, Chabardes S, David O, Depaulis A, Deransart C, Kahane P. (2009). Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies. Epileptic Disord., 11(2), 100-112. 69. Savage LM, Hall JM, Vetreno RP. (2011). Anterior thalamic lesions alter both hippocampal-dependent behavior and hippocampal acetylcholine release in the rat. Learn Mem., 18(12), 751-758. 70. Schachter S, Saper C. (1998) Vagus nerve stimulation. Epilepsia, 39(7), 677-686. 71. Seki M, Zyo K. (1984). Anterior thalamic afferents from the mamillary body and the limbic cortex in the rat. J Comp Neurol., 229(2), 242-256. 72. Shibata H, Kato A. (1993). Topographic relationship between anteromedial thalamic nucleus neurons and their cortical terminal fields in the rat. Neurosci Res., 17(1), 63-69. 73. Shibata H, Naito J. (2005). Organization of anterior cingulate and frontal cortical projections to the anterior and laterodorsal thalamic nuclei in the rat. Brain Res., 1059(1), 93-103. 74. Sloviter RS. (1991). Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the 'dormant basket cell' hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus., 1(1), 41-61. 75. Smith D, Chadwick D. (2001) The management of epilepsy. J Neurol Neurosurg Psychiatry., 70, ii15-ii21. 76. Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y. (1997). NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br J Pharmacol., 121(6), 1171-1179. 77. Spencer SS. (2002). Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia., 43(3), 219-227. 78. Sramka M,Chkhenkeli SA. (1990). Clinical experience in intraoperational determination of brain inhibitory structures and application of implanted neurostimulators in epilepsy. Stereotact Funct Neurosurg., 54-55, 56-59. 79. Sramka M, Fritz G, Galanda M, Nadvornik P. (1976). Some observations in treatment stimulation of epilepsy. Acta Neurochir (Wien).,(23 Suppl), 257-262. 80. Sramka M, Fritz G, Gajdosova D, Nadvornik P. (1980). Central stimulation treatment of epilepsy. Acta Neurochir Suppl (Wien)., 30, 183-187. 81. Sutherland RJ, Rodriguez AJ. (1989). The role of the fornix/fimbria and some related subcortical structures in place learning and memory. Behav Brain Res., 32(3), 265-277. 82. Sziklas V, Petrides M. (1999). The effects of lesions to the anterior thalamic nuclei on object-place associations in rats. Eur J Neurosci., 11(2), 559-566. 83. Talan J. (2009). Deep Brain Stimulation: A New Treatment Shows Promise in the Most Difficult Cases: Dana Press. 84. Takebayashi S, Hashizume K, Tanaka T, Hodozuka A. (2007b). The effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal cortical seizure status in rats. Epilepsia., 48(2), 348-358. 85. Takebayashi S, Hashizume K, Tanaka T, Hodozuka A. (2007a). Anti-convulsant effect of electrical stimulation and lesioning of the anterior thalamic nucleus on kainic acid-induced focal limbic seizure in rats. Epilepsy Res., 74(2-3), 163-170. 86. Tellez-Zenteno JF, M. R., Parrent A, Kubu CS, Wiebe S. (2006). Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology., 66(10), 1490-1494. 87. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M. (2005). An astrocytic basis of epilepsy. Nat Med., 11(9), 973-981. 88. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. (2008). The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg., 108(1), 132-138. 89. Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, Perucca E, Vajda F; EURAP study group. (2011). Dose-dependent risk of malformations with antiepileptic drugs: an analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol., 10(7), 609-617. 90. Turski WA, Cavalheiro EA, Schwarz M, Czuczwar SJ, Kleinrok Z, Turski L. (1983a). Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res., 9(3), 315-335. 91. Turski WA, Czuczwar SJ, Kleinrok Z, Turski L. (1983b). Cholinomimetics produce seizures and brain damage in rats. Experientia., 39(12), 1408-1411. 92. Turski L, I. C., Turski WA, Bortolotto ZA, Cavalheiro EA. (1989). Review: cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: a novel experimental model of intractable epilepsy. Synapse., 3(2), 154-171. 93. Upton AR, Amin I, Garnett S, Springman M, Nahmias C, Cooper IS. (1987). Evoked metabolic responses in the limbic-striate system produced by stimulation of anterior thalamic nucleus in man. Pacing Clin Electrophysiol., 10(1 Pt 2), 217-225. 94. Van Buren JM, Wood JH, Oakley J, Hambrecht F. (1978). Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg., 48(3), 407-416. 95. Velasco AL, Velasco F, Jimenez F, Velasco M, Castro G, Carrillo-Ruiz JD, Fanghanel G, Boleaga B. (2006). Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia., 47(7), 1203-1212. 96. Velasco AL, Velasco F, Velasco M, Jimenez F, Carrillo-Ruiz JD, Castro G. (2007). The role of neuromodulation of the hippocampus in the treatment of intractable complex partial seizures of the temporal lobe. Acta Neurochir Suppl., 97(Pt 2), 329-332. 97. Velasco AL, Velasco M, Velasco F, Menes D, Gordon F, Rocha L, Briones M, Marquez I. (2000). Velasco AL, Velasco M, Velasco F, Menes D, Gordon F, Rocha L, Briones M, Marquez I. Arch Med Res., 31(3), 316-328. 98. Velasco F, Carrillo-Ruiz JD, Brito F, Velasco M, Velasco AL, Marquez I, Davis R. (2005). Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia., 46(7), 1071-1081. 99. Velasco F, Velasco M, Ogarrio C, Fanghanel G. (1987). Electrical stimulation of the centromedian thalamic nucleus in the treatment of convulsive seizures: a preliminary report. Epilepsia., 28(4), 421-430. 100. Velasco F, Velasco M, Jimenez F, Velasco AL, Marquez I. (2001). Stimulation of the central median thalamic nucleus for epilepsy. Stereotact Funct Neurosurg., 77(1-4), 228-232. 101. Velasco F, Velasco M, Velasco AL, Menez D, Rocha L. (2001). Electrical stimulation for epilepsy: stimulation of hippocampal foci. Stereotact Funct Neurosurg., 77(1-4), 223-227. 102. Vesper J, Steinhoff B, Rona S, Wille C, Bilic S, Nikkhah G, Ostertag C. (2007). Chronic high-frequency deep brain stimulation of the STN/SNr for progressive myoclonic epilepsy. Epilepsia., 48(10), 1984-1989. 103. Walia KS, Khan EA, Ko DH, Raza SS, Khan YN. (2004). Side effects of antiepileptics--a review. Pain Pract., 4(3), 194-203. 104. Warburton EC, Aggleton JP. (1999). Differential deficits in the Morris water maze following cytotoxic lesions of the anterior thalamus and fornix transection. Behav Brain Res., 98(1), 27-38. 105. Warburton EC, Baird A, Morgan A, Muir JL, Aggleton JP. (2001). The conjoint importance of the hippocampus and anterior thalamic nuclei for allocentric spatial learning: evidence from a disconnection study in the rat. J Neurosci. , 21(18), 7323-7330. 106. WHO. (2009). Epilepsy, from http://www.who.int/mediacentre/factsheets/fs999/en/ 107. Wille C, Steinhoff BJ, Altenmuller DM, Staack AM, Bilic S, Nikkhah G, Vesper J. (2011). Chronic high-frequency deep-brain stimulation in progressive myoclonic epilepsy in adulthood--report of five cases. Epilepsia., 52(3), 489-496. 108. Wright GD, McLellan DL, Brice JG. (1984). A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry., 47(8), 769-774. 109. Xia Y, Lai Ym Lei L, Liu Y, Yao D. (2009) Left hemisphere predominance of pilocarpine-induced rat epileptiform discharges. J Neuroeng Rehabil., 6:42. 110. Zhang Q, Wu ZC, Yu JT, Zhong XL, Xing YY, Tian Y, Miao D, Tan L. (2012). Anticonvulsant effect of unilateral anterior thalamic high frequency electrical stimulation on amygdala-kindled seizures in rat. Brain Res Bull., 87(2-3), 221-226. 111. Zhong XL, Lv KR, Zhang Q, Yu JT, Xing YY, Wang ND, Tan L. (2011). Low-frequency stimulation of bilateral anterior nucleus of thalamus inhibits amygdale-kindled seizures in rats. Brain Res Bull. , 86(5-6), 422-427. 112. Ziai WC, Sherman DL, Bhardwaj A, Zhang N, Keyl PM, Mirski MA. (2005). Target-specific catecholamine elevation induced by anticonvulsant thalamic deep brain stimulation. Epilepsia., 46(6), 878-888. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65354 | - |
| dc.description.abstract | 癲癇,為一種可能發生在任何年齡且分布在世界各地之慢性神經疾病。現有治療癲癇策略包括抗癲癇藥、切除性手術和迷走神經電刺激法;儘管如此,仍有約三分之一的病患無法藉由這些方式得到良好的癲癇發作控制。此類難以控制之癲癇型態,又稱為頑性癲癇(refractory epilepsy)。近年來,學者提出,視丘前核之腦深層電刺激術(deep brain stimulation of anterior thalamic nucleus, ATN DBS)為治療頑性癲癇的可能方法。DBS有四個可調整參數,分別是刺激目標、刺激強度、刺激頻率與刺激時機。目前經過數國許可為癲癇治療的刺激目標,只有ATN。在刺激條件中,現有文獻已指出高頻率、高強度的雙側電刺激有較佳治療效果。但治療癲癇之最佳刺激條件尚未有定論。
刺激時機依照刺激方式,又可分為連續式或間斷式之開放性刺激(open-looped)與閉鎖式刺激(closed-looped stimulation)。閉鎖式刺激係指根據大腦發出的訊號線索,只在癲癇快要發作前才給予電刺激的方法。為了找出治療頑性癲癇之適當閉鎖式刺激條件,我們利用pilocarpine這種化合物誘發大鼠癲癇。Pilocarpine誘發之癲癇發作能模擬人顳葉型癲癇,又具有可預期發作時間之優點,適合用於閉鎖式電刺激參數之研究。 本研究以腦波作為判斷癲癇發作之主要依據,並搭配行為影像紀錄。實驗第一天先手術植入腦波圖記錄電極,並將電刺激電極植入左側視丘前核,將其固定在大鼠頭部,到第八天時以腹腔注射方式給予大鼠280-290 mg/kg pilocarpine以誘發癲癇發作。刺激流程為,在給藥前不同的時間點,開始連續ATN DBS,且電刺激設定條件為每個脈衝時間90 μs、強度50 μA,刺激頻率200 Hz。結果發現,給藥前60分鐘開始連續給予大鼠單側ATN DBS能成功抑制癲癇發作活性。抑制效果包括閾值增加,腦波和行為上發作時間延遲,而且發展為癲癇重積(status epilepticus)的大鼠數目減少。在腦組織切片中,僅有不等程度之植入傷害引起的發炎反應。總括上述,本研究顯示長時間高頻率、低電流之單側ATN DBS也能具有癲癇抑制效果,此刺激條件對於神經組織僅具輕微傷害性。 | zh_TW |
| dc.description.abstract | Epilepsy is a chronic neurological disease which affects people of all ages and distributes worldwide. Current strategy for treating epilepsy includes medication, resective surgery and vagus nerve stimulation. In spite of these treatments, there are about one third of epileptic patients who still suffer from uncontrollable seizures. Refractory epilepsy is another name for any type of epilepsy that is resistant to medication. Recently, deep brain stimulation of anterior thalamic nucleus (ATN DBS) has been proposed as a promising therapy for refractory epilepsy. There are four main questions for DBS: (1) How to stimulate the brain? (2) Where is the stimulation target? (3) What is the stimulation parameter? (4) When should one start to stimulate the brain? On one hand, the approved stimulation target for epilepsy is ATN only. On the other hand, the stimulation parameters seem to be a high frequency and a high current. For now, there is no optimal stimulation for DBS on epilepsy treatment so far.
The way to stimulate the brain could be continuous or intermittent and be open-looped or closed-looped. The closed-looped stimulation is starting the stimulation when the cue of seizure attack appears. In order to figure out the suitable stimulation paradigm for a closed-looped stimulation system, we use the pilocarpine-induced epileptic rat model. Advantages of pilocarpine-induced epilepsy are simulation of human temporal lobe epilepsy and a predictable seizure onset. In this study, electroencephalogram (EEG) was the primary tool for monitoring and identifying seizure. Video-recording was an additional tool. The experiment started on Day one: the rats received EEG electrode with or without DBS electrode implantation.The DBS electrode was introduced to the left anterior thalamic nucleus. On Day eight, all rats were intraperitoneally injected with 280-290 mg/kg pilocarpineto induce seizures. Stimulation began at different time points before pilocarpine administration. The stimulation parameters were 200 Hz, 50 μA and the pulse width 90 μs. Our results showed 60 minutes pre-stimulation successfully suppressed seizure activity. The effects of suppressionincluded an increased seizure threshold, a delayed electrographic and behavioral seizure onset, and a decreased number of rats developed seizure and status epilepticus. In the histopathological findings, only mild inflammation was noted around the implanted site. We conclude that with high stimulation frequency, low stimulation current and prolongedstimulation duration, unilateral ATN DBS could be able to suppress seizures without severe tissue damages. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:38:13Z (GMT). No. of bitstreams: 1 ntu-101-R99629011-1.pdf: 2234838 bytes, checksum: 908f390408218eb02eb530b81ad980a7 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………………… i
誌謝……………………………………………………………………………………… ii 中文摘要…………………………………………………………………………… iii 英文摘要…………………………………………………………………………… v 第一章 緒論……………………………………………………………… 1 第一節 研究背景與動機………………………………………… 1 第二節 研究目的……………………………………………………… 6 第二章 文獻回顧與探討………………………………………… 7 第一節 癲癇與癲癇生成………………………………………… 7 2-1.1 癲癇的基本介紹………………………………………… 7 2-1.2 癲癇生成…………………………………………………… 10 第二節 腦深層電刺激術於癲癇的相關研究……… 16 2-2.1 DBS應用於癲癇的臨床結果…………………… 16 2-2.2 ATN DBS應用於癲癇的實驗動物結果… 21 第三節 大鼠ATN的解剖位置、連結和功能………… 26 第四節 癲癇動物模式的選擇……………………………… 28 第三章 材料與方法……………………………………………… 31 第一節 實驗動物…………………………………………………… 31 第二節 立體定位手術…………………………………………… 31 第三節 實驗用藥…………………………………………………… 33 第四節 電刺激器與參數之設定………………………… 34 第五節 腦波圖-影像之記錄與分析………………… 34 第六節 實驗流程…………………………………………………… 35 第七節 腦組織採樣與檢查………………………………… 36 第八節 統計方法…………………………………………………… 37 第四章 結果…………………………………………………………… 38 第一節 Pilocarpine的效果……………………… 38 第二節 單側ATN DBS的效果………………………… 39 第三節 神經病理變化……………………………………… 41 第五章 討論…………………………………………………………… 43 第六章 結論…………………………………………………………… 52 第七章 圖表…………………………………………………………… 53 參考文獻………………………………………………………………………… 65 附錄………………………………………………………………………………… 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 癲癇 | zh_TW |
| dc.subject | 腦深層電刺激術 | zh_TW |
| dc.subject | 視丘前核 | zh_TW |
| dc.subject | 顳葉型癲癇大鼠模式 | zh_TW |
| dc.subject | pilocarpine | zh_TW |
| dc.subject | pilocarpine | en |
| dc.subject | anterior thalamic nucleus (ATN) | en |
| dc.subject | rat model of temporal lobe epilepsy | en |
| dc.subject | epilepsy | en |
| dc.subject | deep brain stimulation (DBS) | en |
| dc.title | 以大鼠顳葉型癲癇模式探討腦深層電刺激術於癲癇治療之作用 | zh_TW |
| dc.title | Effect of Deep Brain Stimulation for Epilepsy in the Rat Model of Temporal Lobe Epilepsy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡崇豪,徐崇堯,李立仁,周碩彬 | |
| dc.subject.keyword | 癲癇,腦深層電刺激術,視丘前核,顳葉型癲癇大鼠模式,pilocarpine, | zh_TW |
| dc.subject.keyword | epilepsy,deep brain stimulation (DBS),anterior thalamic nucleus (ATN),rat model of temporal lobe epilepsy,pilocarpine, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
