Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65333
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐源泰
dc.contributor.authorHsun Wangen
dc.contributor.author王薰zh_TW
dc.date.accessioned2021-06-16T23:37:02Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-07-26
dc.identifier.citation1. 朱文深。2009。基因改造微生物。食品工業。食品工業發展研究所。41:1-2
2. 林祐生、李文乾。生質酒精。科學發展。433:20-25。
3. 周英隆。2008。談農業生質能源與減碳效果。農委會-農政與農情。194期。
4. 陳文恆、郭家倫、黃文松、王嘉寶。2007。纖維酒精技術之發展。農業生技產業季刊。9:62-69。
5. 馮斌、謝先芝。2003。基因工程技術。五南圖書出版,台北。
6. 黃麗娜。2007。微生物資源與纖維素酒精之開發。生物資源保存及研究簡訊。食品工業發展研究所。20:5-12。
7. 劉振坤、朱健松、陳文彬與林正亮。2006。酸菜殘餘物浸泡脫鹽法之探討。中華農學會報。7:234-244。
8. 廖春梅。2010。生質酒精之經濟效益分析。臺灣銀行季刊。61:163-190。
9. 謝易儒。2008。嗜鹽菌Vibrionaceae sp. NTU-05 纖維水解酶基因之選殖與表現。國立臺灣大學園藝學研究所碩士論文。
10. Ahmed, S., S. Riaz, and A. Jamil. 2009. Molecular cloning of fungal xylanases: an overview. Appl. Microbiol. Biotechnol. 84:19-35.
11. Amaya-Delgado, L., T. Mejia-Castillo, A. Santiago-Hernandez, J. Vega-Estrada, F.G.S. Amelia, B. Xoconostle-Cazares, R. Ruiz-Medrano, M.D. Montes-Horcasitas, and M.E. Hidalgo-Lara. 2010. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresource Technol. 101:5539-5545.
12. Ay, J., F. Gotz, R. Borriss, and U. Heinemann. 1998. Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after
insertion ofautonomous globular domain. Proc. Natl. Acad. Sci. 95:6613-6618.
13. Badger, P.C. 2002. Ethanol from cellulose: a general review. In: Janick J, Whipkey A, editors. Trends in new crops and new uses. Alexandria, VA: ASHS Press; 2002.
14. Bailey, M.J., P. Biely, and K. Poutanen. 1992. Interlabortatory testing of methods for assay of xylanase activity. J. Biotechnol. 23:257-270.
15. Balat, M. 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manage. 52:858-875.
16. Beg, Q.K., M. Kapoor, L. Mahajan, and G.S. Hoondal. 2001. Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56:326–338.
17. Beguin, P. 1983. Detection of cellulase activity in polyacrylamide gels using congo red-stained agar replicas. Anal. Biochem. 131:333-336.
18. Cardona-Alzate, C.A. and O.J. Sanchez-Toro. 2006. Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass. Energy. 31:2447-2459.
19. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23.
20. Coutinho, P.M. and B. Henrissat. 1999. Carbohydrate-active enzyme server (CAZY) at URL: http://afmb.cnrs-mrs.fr/~cazy/CAZY/.
21. Crepin, V.F., C.B. Fauld, and I.F. Connerton. 2004. Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol. 63:647–652.
22. Garnier, J., J.F. Gibrat, and B. Robson. 1996. GOR secondary structure prediction method version IV, , Methods in Enzymology, R.F. Doolittle Ed. 266:540-553.
23. Gilbert, H.J. and G.P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139:187-194.
24. Giridhar, P.V. and T.S. Chandra. 2010. Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem. 45:1730-1737.
25. Guo, B., X.L. Chen, C.Y. Sun, B.C. Zhou, and Y.Z. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84:1107-1115.
26. Helianti, I., N. Nurhayati, M. Ulfah, B. Wahyuntari, and Setyahadi, S. 2010. Constitutive high level expression of an endoxylanase gene from the newly isolated Bacillus subtilis AQ1 in Escherichia coli. J. Biomedicine Biotechnol. 980567.
27. Hsu, T.A., M.R. Ladisch, and G.T. Tsao. 1980. Alcohol from cellulose. Chem Technol. 10:315–9.
28. Hung, K.S., S.M. Liu, T.Y. Fang, W.S. Tzou, F.P. Lin, K.H. Sun, and S.J. Tang. 2011. Characterization of a salt-tolerant xylanase from Thermoanaerobacterium saccharolyticum NTOU1. Biotechnol. Lett. 33:1441-1447.
29. Huang, J.L., G.X. Wang and L.Xiao. 2006. Cloning, sequencing and expression of xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresource Technol. 97:806-808.
30. Iranmahboob, J., F. Nadim, and S. Monemi. 2002. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenergy. 22:401–4.
31. Izydorczyk, M.S. and C.G. Biliaderis. 1995. Cereal arabinoxylans: advances in structure and physiochemical properties. Carbohydr Polym. 28:33–48.
32. Jalal, A., N. Rashid, N. Rasool, and M. Akhtar. 2009. Gene cloning and characterization of a xylanase from a newly isolated Bacillus subtilis strain R5. J. Biosci. Bioeng. 107:360-365.
33. Keshwani, D.R. and J.J. Cheng. 2009. Switchgrass for bioethanol and other value-added applications: a review. Bioresour Technol. 100:1515–23.
34. Khandeparker, R., P. Verma, and D. Deobagkar. 2011. A novel halotolerant xylanase from marine isolate Bacillus subtilis cho40 gene cloning and sequencing. N. Biotechnol. 28:814-821.
35. Klinke, H.B., A.B. Thomsen, and B.K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbio. Biotechnol. 66:10-26.
36. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23:411–456.
37. Laine, C. 2005. Structures of hemicelluloses and pectins in wood and pulp. http://lib.tkk.fi/Diss/2005/isbn9512276909.
38. Lee, C.C., R.E. Kibblewhite-Accinelli, M.R. Smith,K. Wagschal, W.J. Orts, and D.W.S. Wong, 2008. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Curr. Microbiol. 57:301-305.
39. Li, K., P. Azadi, R. Collins, J. Tolan, J. Kim, and K. Eriksson. 2000. Relationships between activities of xylanases and xylan structures. Enzyme Microb. Technol. 27:89-94.
40. Madern, D., C. Ebel, and G. Zaccai. 2000. Halophilic adaptation of enzymes. Extremophiles. 4:91-98.
41. McDermid, K.P., C.W. Forsberg, and C.R. MacKenzie. 1990. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 56:3805-3810.
42. Menon, G, K. Mody, J. Keshri, and B. Jha. 2010. Isolation, Purification, and Characterization of Haloalkaline Xylanase from a Marine Bacillus pumilus Strain, GESF-1. Biotechnol Bioproc Eng. 15:998-1005.
43. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.
44. Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Production Of Alkaline xylanase by a newly isolated alkaliphilic Bacillus sp strain 41m-1. World J. Microb. Biotechnol. 9:221-224 .
45. Ninawe, S., M. Kapoor, and R.C. Kuhad. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresour. Technol. 99:1252-1258.
46. Pan, X., N. Gilkes, and J.N. Saddler. 2006. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung. 60:398–401.
47. Panbangred, W., E. Fukusaki, E.C. Epifanio, A. Shinmyo, and H.Okada. 1985. Expression of a xylanase gene of Bacillus-pumilus in Escherichia-coli and Bacillus-subtilis. Appl. Microbiol. Biotechnol. 22:259-264.
48. Polizeli, M.L.T.M., A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, and D.S. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67:577–591.
49. Prade, R.A. 1995. Xylanase, from biology to biotechnology. Biotechnol. Genet Eng. Rev. 13:101-131.
50. Prakash, P., S.K. Jayalakshmi, B. Prakash, M. Rubul, and K. Sreeramulu. 2011. Production of alkaliphilic, halotolerent, thermostable cellulase free xylanase by Bacillus halodurans PPKS-2 using agro waste single step purification and characterization. World J. Microbiol. Biotechnol. 28:183-192.
51. Saha, B.C. 2004. Lignocellulose biodegradation and applications in biotechnology. ACS Symp Ser. 889:2–34.
52. Salles, B.C., V.S.J. Te'o, M.D. Gibbs, P.L. Bergquist, E.X.F. Filho, E.A. Ximenes, and K.M.H. Nevalainen. 2007. Identification of two novel xylanase-encoding genes (xyn5 and xyn6) from Acrophialophora nainiana and heterologous expression of xyn6 in Trichoderma reesei. Biotechnol. Lett. 29:1195-1201.
53. Sambrook, J., E.F. Fritshch, and T. Maniatis. 1989. Molecular Cloning: a laboratory manual. 2nd ed. N.Y. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press. ISBN 0-87969-309-6.
54. Sapag, A., J. Wouters, C. Lambert, P. de loannes, J. Eyzaguirre, and E. Depiereux. 2002. The endoxylanases from family 11: computer analysis of protein sequences reveals important structure and phylogenetic relationships. J. Bioethanol. 95:109-131.
55. Sarkar, N., S.K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renew. Energy. 37:19-27.
56. Schlacher, A., K. Holzmann, M. Hayn, W. Steiner, and H. Schwab. 1996. Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Bioethanol. 49:211-218.
57. Sigh, S., A.M. Madlala, and B.A. Prior. 2003. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol. Rev. 27:3-16.
58. Subramaniyan, S. and P. Prema. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22:33-64.
59. Sun, Y. and J. Cheng. 2002 Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol. 83:1–11.
60. Szulczyk, K.R., B.A. McCarl, and G. Cornforth. 2010. Market penetration of ethanol. Renew Sustain Energy Rev. 14:394–403.
61. Twomey, L.N., J.R. Pluske, J.B. Rowe, M. Choct, W. Brown, M.F. McConnell, and D.W. Pethick. 2003. The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Anim. Feed Sci. Technol. 108:71–82.
62. Ventosa, A., J.J. Nieto, A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62: 504
63. Waino, M. and K. Ingvorsen. 2003. Production of beta-xylanase and beta-xylosidase by the extremely halophilic archaeon Halorhabdus utahensis. Extremophiles. 7:87-93.
64. Wang, C.Y., H. Chan, H.T. Lin, and Y.T. Shyu. 2010. Production, purification and characterisation of a novel halostable xylanase from Bacillus sp NTU-06. Ann. Appl. Biol. 156:187-197.
65. Wejse, P.L., K. Ingvorsen, and K.K. Mortensen. 2003. Purification and characterisation of two extremely halotolerant xylanase from a novel halophilic bacterium. Extremophiles. 7:423-431.
66. Williams, C.M.J., T.K. Biswas, G. Schrale, J.G. Virtue, and S. Headinf. 2008. Use of saline land and wastewater for growing a potential biofuel crop (Arundo donax L). Irrigation Australia 2008 conference papers.
67. Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler. 1988. Multiplicity of β-1,4-xylanase in microorganisms, functions and applications. Microbiol Rev. 52:305–317.
68. Yamaguchi, R., Y. Inoue, H. Tokunaga, M. Ishibashi, T. Arakawa, J. Sumitani, T. Kawaguchi, M. Tokunaga. 2012. Halophilic characterization of starch-binding domain from Kocuria varians alpha-amylase. Macromolecules. 50: 95-102.
69. Yu, Y., X. Lou, and H. Wu. 2008. Some recent advances in hydrolysis of biomass in hotcompressed water and its comparisons with other hydrolysis methods. Energy Fuel. 22:46–60.
70. Zhang, M.Z.Q. Jiang, S.Q. Yang, C.W. Hua, and L.T. Li. 2010. Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresource Technol. 101:688-695.
71. Zhang, Y.H.P., M.E. Himmel, and J.R. Mielenz. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv. 24:452–81.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65333-
dc.description.abstract半纖維素 (Hemicellulose) 為自然界中含量僅次於纖維素的多醣,此為一由多種多醣所組成的無結晶型異質多醣,其中又以聚木醣 (xylan) 為最主要的成分,聚木醣主要是木糖六元環 (xylopyranose) 以 β-1,4鍵結而成的多醣,若要完整降解聚木醣成單醣,則需要多種類型之聚木醣水解酶的參與,包含β-1,4-內切型聚木醣水解酶 (β-1,4-endoxylanase, EC 3.2.1.8)。本次實驗自嗜鹽菌Bacillus spp. NTU-06選殖出一642 bp之基因片段,此核酸序列與Bacillus licheniformis MS5-14 之內切型聚木醣水解酶基因 xyn11 (Accession no. EU591524) 相似度達99%,經推導後可轉譯出213個胺基酸,且與Bacillus licheniformis之內切型聚木醣水解酶基因 (Accession no. ACF05486) 具99%之相似度,屬於醣苷水解酶第11家族β-1,4-內切型聚木醣水解酶之成員,並命名為xyn6。XYN6之N端約30個胺基酸為訊息肽鏈 (signal peptide),此訊息肽鏈可將前驅蛋白質引導至細胞膜上,經訊息胜肽酶 (signal peptidase) 切解作用,將具催化能力之成熟酵素分泌至細胞膜外。成熟之重組XYN6分子量大小為21.13 kDa,而重組之β-1,4-內切型聚木醣水解酶XYN6之最適作用環境溫度為60℃,並可穩定存在於40℃之環境達24小時,而其最適作用環境pH值為 pH 6.0,最適作用環境鹽度則為15-20% NaCl,且於30% NaCl的環境下仍能維持其一定之活性。以樺木聚木醣 (birchwood xylan) 做為基質進行酵素動力學分析,其Km值為10.48 mg mL-1、Vmax值則為217.39 IU mL-1,比活性則為869.27 IU mg-1。重組之XY6屬於嗜高溫與高嗜鹽性之β-1,4-內切型聚木醣水解酶,具有發展成為處理含鹽之農作廢棄物或木質纖維生物質之酵素單元,以改良或開發新型纖維質酒精之製程。zh_TW
dc.description.abstractHemicellulose is the second major component of lignocellulose biomass in nature. Complete degradation of this substrate requires several different enzymes, including β-1,4-endoxylanase (EC 3.2.1.8). A gene encoding a β-1,4-endoxylanase, named xyn6, was cloned from Bacillus sp. NTU-06 and was heteroexpressed in Escherichia coli BL21 (DE3). The gene, xyn6, consisted of 642 bp, and the translated protein encoded 213 amino acid residues. The sequence of xyn6 showed 99% similarity to β-1,4-endoxylanase xyn11 (Accession no. EU591524) from Bacillus licheniformis MS5-14, and the deduced amino acid sequence of xyn6 showed highest identity of 99% with an endoxylanase from Bacillus licheniformis (Accession no. ACF05486). According to the amino acid sequence similarities, this enzyme was assigned as a member of glycosyl hydrolases family 11. The 30 residue N-terminal sequence of the XYN6 was a putative signal peptide, and the mature recombinant xyn6 protein posses molecular mass of 21.13 kDa. The recombinant XYN6 showed an maximal activity at 60℃, pH 6.0. It also showed an optimal activity at 15-20% NaCl, and substantial activity remained at 30% NaCl. Using birchwood xylan as substrate, the enzyme displayed Km of 11.05 mg mL-1 and Vmax of 227.27 IU mL-1. The specific activity of purified XYN6 toward birchwood xylan was 869.27 IU mg-1. The xylanase XYN6 showed high activity under saline conditions, and shown to be industrial potential for various industrial processes such as wastewater treatment and bioethanol production.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:37:02Z (GMT). No. of bitstreams: 1
ntu-101-R99628203-1.pdf: 2189065 bytes, checksum: 5586ecdbfba3ccca470b30687906fa74 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
中文摘要 iii
英文摘要 iv
目 錄 v
第一章 前言 1
第二章 文獻回顧 2
第一節 生質酒精 2
一、 前處理 (Pretreatment) 4
二、 水解 (Hydrolysis) 5
三、 發酵 (Fermentation) 6
第二節 木質纖維素 7
一、 木質纖維素生物質 7
二、 聚木醣之簡介 11
三、 含鹽之農產廢棄纖維生物質 12
第三節 聚木醣水解酵素簡介 14
一、 聚木醣水解酶之作用類型與分類 14
二、 聚木醣水解酶之醣苷水解酵素家族分類 16
三、 聚木醣水解酶之來源 20
四、 聚木醣水解酶之應用 20
第四節 Bacillus spp. NTU-06聚木糖水解酶基因之選殖與表現 22
一、 嗜鹽菌Bacillus spp. NTU-06之簡介 22
二、 聚木醣水解酶基因選殖與表現系統之建構 23
第五節 研究目的與實驗架構 27
第三章 實驗材料與方法 28
第一節 菌種之活化與保存 28
第二節 嗜鹽菌Bacillus spp. NTU-06 β-1,4-內切型聚木醣水解酶基因之選殖.... 29
一、 菌體染色體DNA之製備 29
二、 聚合酶鏈鎖反應 30
三、 DNA之電泳分析 31
四、 選殖系統之構築 32
五、 重組質體之檢視 33
第三節 嗜鹽菌Bacillus spp. NTU-06 β-1,4-內切型聚木醣水解酶基因之表現 34
一、 質體DNA之製備 34
二、 質體DNA之限制酶分析 35
三、 表現系統之構築 37
四、 轉形株之篩選與檢視 37
第四節 重組β-1,4-內切型聚木醣水解酶之純化與分析 38
一、 重組菌株之大量培養 38
二、 重組β-1,4-內切型聚木醣水解酶之粗萃液製備 39
三、 快速蛋白質液相層析系統分析 40
四、 蛋白質濃度測定 41
五、 SDS-PAGE膠體電泳 42
六、 西方轉漬免疫反應分析 44
七、 酶譜分析 (Zymogram assay) 46
第五節 聚木醣水解酶之活性分析 47
一、 剛果紅活性染色分析 47
二、 β-1,4-內切型聚木醣水解酶活性分析 (DNS還原糖測定法) 48
三、 β-1,4-內切型聚木醣水解酶之生化特性分析 49
第四章 結果 51
第一節 Bacillus spp. NTU-06 原生性β-1,4-內切型聚木醣水解酶生化特性分析 51
一、 最適反應溫度測定 51
二、 最適反應pH值測定 52
三、 最適反應鹽度測定 53
第二節 Bacillus spp. NTU-06 β-1,4-內切型聚木醣水解酶基因之選殖 54
一、 引子對設計與選殖 54
二、 基因比對與分析 55
第三節 重組β-1,4-內切型聚木醣水解酶之表現 63
一、 表現載體之構築 63
二、 重組β-1,4-內切型聚木醣水解酶之活性測試 65
三、 誘導重組β-1,4-內切型聚木醣水解酶表現之最適條件 66
第四節 重組β-1,4-內切型聚木醣水解酶之純化 67
一、 快速蛋白質液相層析系統分析 67
二、 重組β-1,4-內切型聚木醣水解酶之純化成果分析 69
第五節重組β-1,4-內切型聚木醣水解酶之生化特性分析 71
一、 最適反應溫度測定 71
二、 最適反應pH值測定 72
三、 最適反應鹽度測定 73
四、 熱穩定性分析 74
五、 pH穩定性分析 75
六、 鹽度穩定性分析 76
七、 酵素動力學測定 77
第六節 β-1,4-內切型聚木醣水解酶XYN6之生物資訊學分析 78
一、 胺基酸序列之親疏水性分析 78
二、 蛋白質穿膜區域之預測 79
三、 蛋白質二級結構之預測 81
四、 訊息肽鏈位置之預測 82
五、 Twin arginine translocation (Tat) 訊息肽鏈切解位置之預測 84
六、 蛋白質分子量分析 86
七、 蛋白質之一級結構之分析 86
八、 蛋白質立體結構之預測 88
第五章 討論 89
第六章 結論 97
參考文獻 99
dc.language.isozh-TW
dc.title"嗜鹽菌Bacillus spp. NTU-06 β-1,4-內切型聚木醣水解酶基因之選殖與表現"zh_TW
dc.titleMolecular Cloning and Expression of the β-1,4-Endoxylanase Gene from Halophiles Bacillus spp. NTU-06en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭瑩,許 輔,曾文聖
dc.subject.keywordBacillus spp.,內切型-β-1,4-聚木醣水解&#37238,Escherichia coli,基因選殖,異源表現,木質纖維質酒精,zh_TW
dc.subject.keywordBacillus spp.,Endo-1,4-beta-xylanase,Escherichia coli,Gene cloning,Heterologous expression,Lignocellulosic ethanol,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2012-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved