請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊 | |
| dc.contributor.author | Shih-Shan Lin | en |
| dc.contributor.author | 林詩珊 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:36:59Z | - |
| dc.date.available | 2017-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-26 | |
| dc.identifier.citation | 李曜宏 (2008) NF-κB 及 Oct-2 在脂多醣透過MEK/ERK 訊息傳遞路徑活化巨噬細胞表現G-CSF之過程中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
黃宇澤 (2010) 探討受LPS刺激的小鼠巨噬細胞中Oct-2在G-CSF表現過程中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 楊惠晴 (2011) MEK-ERK-C/EBPβ 在巨噬細胞中對脂多醣誘導G-CSF表現的必要角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 林偲涵 (2011) ERK2調控G-CSF在侵略性癌細胞中的表現。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 Ajenjo, N., Canon, E., Sanchez-Perez, I., Matallanas, D., Leon, J., Perona, R., and Crespo, P. (2004). Subcellular Localization Determines the Protective Effects of Activated ERK2 against Distinct Apoptogenic Stimuli in Myeloid Leukemia Cells. J Biol Chem 279, 32813-32823. Akashi, M., Shaw, G., Hachiya, M., Elstner, E., Suzuki, G., and Koeffler, P. (1994). Number and location of AUUUA motifs: role in regulating transiently expressed RNAs. Blood 83, 3182-3187. Akira, S., Ishiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., Nakajima, T., Hirano, T., and Kishimoto, T. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO 9, 1897-1906. Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511. Arnal-Estape, A., Tarragona, M., Morales, M., Guiu, M., Nadal, C., Massague, J., and Gomis, R.R. (2010). HER2 Silences Tumor Suppression in Breast Cancer Cells by Switching Expression of C/EBPβ Isoforms. Cancer Res 70, 9927-9936. Bachleda, P., and Dvorak, Z. (2008). Pharmacological inhibitors of JNK and ERK kinases SP600125 and U0126 are not appropriate tools for studies of drug metabolism because they activate aryl hydrocarbon receptor. Gen Physiol Biophys 27(2), 143-145. Barbacid, M., and Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3, 459-465. Bentires-Alj, M., Kontaridis, M.I., and Neel, B.G. (2006a). Stops along the RAS pathway in human genetic disease. Nat Med 12, 283-285. Bentires-Alj, M., Kontaridis, M.I., and Neel, B.G. (2006b). Stops along the RAS pathway in human genetic disease. Nature 12, 283-285. Berdel, W.E., Danhauser-Riedl, S., Steinhauser, G., and Winton, E.F. (1989). Various human hematopoietic growth factors (interleukin-3, GM-CSF, G- CSF) stimulate clonal growth of nonhematopoietic tumor cells [see comments]. Blood 73, 80-83. Boneberg, E.-M., Hareng, L., Gantner, F., Wendel, A., and Hartung, T. (2000). Human monocytes express functional receptors for granulocyte colony– stimulating factor that mediate suppression of monokines and interferon-γ. Blood 95, 270-276. Boneberg, E.-M., and Hartung, T. (2002). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51, 119-128. Boulton, T.G., Nye, S.H., Robbins, D.J., Ip, N.Y., Radzlejewska, E., Morgenbesser, S.D., DePinho, R.A., Panayotatos, N., Cobb, M.H., and Yancopoulos, G.D. (1991). ERKs: A family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675. Boulton, T.G., Yancopoulos, G.D., Gregory, J.S., Slaughter, C., Moomaw, C., Hsu, J., and Cobb, M.H. (1990). An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249, 64-67. Brami-Cherrier, K., Roze, E., Girault, J.-A., Betuing, S., and Caboche, J. (2009). Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. J Neurochem 108, 1323-1335. Brown, C.Y., Lagnado, C.A., and Goodall, G.J. (1996). A cytokine mRNA-destabilizing element that is structurally and functionally distinct from A+U-rich elements. Proc Natl Acad Sci USA 93, 13721-13725. Campbell, I.K., Novak, U., Cebon, J., Layton, J.E., and Hamilton, J.A. (1991). Human articular cartilage and chondrocytes produce hemopoietic colony- stimulating factors in culture in response to IL-1. J Immunol 147, 1238-1246. Cargnello, M., and Roux, P.P. (2011). Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Mol Biol Rev 75, 50-83. Carlson, S.M., Chouinard, C.R., Labadorf, A., Lam, C.J., Schmelzle, K., Fraenkel, E., and White, F.M. (2011). Large-Scale Discovery of ERK2 Substrates Identifies ERK-Mediated Transcriptional Regulation by ETV3. Science Signaling 4, rs11. Carulli, G. (1997). Effects of recombinant human granulocyte colony-stimulating factor administration on neutrophil phenotype and functions. Haematologica 82, 606-616. Cesena, T.I., Cui, T.X., Piwien-Pilipuk, G., Kaplani, J., Calinescu, A.-A., Huo, J.S., Iniguez-Lluhi, J.A., Kwok, R., and Schwartz, J. (2007). Multiple mechanisms of growth hormone-regulated gene transcription. Mol Genet Metab 90, 126-133. Chen, Y.-J., Wang, Y.-N., and Chang, W.-C. (2007). ERK2-mediated C-terminal Serine Phosphorylation of p300 Is Vital to the Regulation of Epidermal Growth Factor-induced Keratin 16 Gene Expression. J Biol Chem 282, 27215-27228. Chiara Vantaggiato, Ivan Formentini, Attilio Bondanza, Chiara Bonini, Luigi Naldini, and Brambilla, R. (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 5, 14. Cockerill, P.N., and Klinken, S.P. (1990). Octamer-binding proteins in diverse hemopoietic cells. Mol Cell Biol 10, 1293-1296. Cohen-Armon, M., Visochek, L., Rozensal, D., Kalal, A., Geistrikh, I., Klein, R., Bendetz-Nezer, S., Yao, Z., and Seger, R. (2007). DNA-Independent PARP-1 Activation by Phosphorylated ERK2 Increases Elk1 Activity: A Link to Histone Acetylation. Molecular Cell 25, 297-308. Cornish, A.L., K., I., Campbell, S., B., McKenzie, Chatfield, S., and Wicks, l.P. (2009). G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5, 554-559. Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808. Descombes, P., and Schibler, U. (1991). A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the sam mRNA. Cell 67, 569-579. Drobic, B., Perez-Cadahia, B., Yu, J., Kung, S.K.-P., and Davie, J.R. (2010). Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 38, 3196-3208. Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479. Ernst, T.J., Ritchie, A.R., Demetri, G.D., and Griffin, J.D. (1989). Regulation of granulocyte- and monocyte-colony stimulating factor mRNA levels in human blood monocytes is mediated primarily at a post-transcriptional level. J Biol Chem 264, 5700-5703. Fau, G.I., and Flavell, R.A. (1998). CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16, 111-135. Fau, T.D., Cannizzaro, L.A., Palumbo, A.P., Shane, S., K, H., Vantuinen, P., Ledbetter, D.H., Jb, F., Nowell, P.C., and Rovera, G. (1987). Molecular cloning and characterization of a cDNA for human granulocyte colony-stimulating factor (G-CSF) from a glioblastoma multiforme cell line and localization of the G-CSF gene to chromosome band 17q21. Oncogene Res 3, 209-220. Fau, Y.T., Hyodo, M., Hosoya, Y., Koinuma, K., Kurashina, K., Saitoh, S., Hirashima, Y., Arai, W., Zuiki, T., Yasuda, Y., et al. (2005). Aggressive G-CSF-producing gastric cancer complicated by lung and brain abscesses, mimicking metastases. Gastric Cancer 8, 198-201. Fibbe, W.E., van Damme, J., Billiau, A., Goselink, H.M., Voogt, P.J., van Eeden, G., Ralph, P., Altrock, B.W., and Falkenburg, J.H. (1988). Interleukin 1 induces human marrow stromal cells in long-term culture to produce granulocyte colony-stimulating factor and macrophage colony- stimulating factor. Blood 71, 430-435. Foulds, C.E., Nelson, M.L., Blaszczak, A.G., and Graves, B.J. (2004). Ras/Mitogen-Activated Protein Kinase Signaling Activates Ets-1 and Ets-2 by CBP/p300 Recruitment. Mol Cell Biol 24, 10954-10964. Franzke, A., Piao, W., Lauber, J., Gatzlaff, P., Konecke, C., Hansen, W., Schmitt-Thomsen, A., Hertenstein, B., Buer, J., and Ganser, A. (2003). G-CSF as immune regulator in T cells expressing the G-CSF receptor: implications for transplantation and autoimmune diseases. Blood 102, 734-739. G, C., Sbrana, S., Azzara, A., Minnucci, S., Angiolini, C., and Ambrogi, F. (1997). Reversal of autoimmune phenomena in autoimmune neutropenia after treatment with rhG-CSF: two additional cases. Br J Haematol 96, 877-878. Gorgen, I., Hartung, T., Leist, M., Niehorster, M., Tiegs, G., Uhlig, S., Weitzel, F., and Wendel, A. (1992). Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-alpha. J Immunol 149, 918-924. Granger, R.L., Hughes, T.R., and Ramji, D.P. (2000). Stimulus- and cell-type-specific regulation of CCAAT-enhancer binding protein isoforms in glomerular mesangial cells by lipopolysaccharide and cytokines. Biochim Biophys Acta 1501, 171-179. Guha, M., O'Connell, M.A., Pawlinski, R., Hollis, A., McGovern, P., Yan, S.-F., Stern, D., and Mackman, N. (2001). Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor α expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98, 1429-1439. H, N., Ueki, Y., Sakito, S., Matsumoto, K., Yano, M., Miyake, S., Tominaga, T., Tominaga, M., and Eguchi, K. (2000). High serum and synovial fluid granulocyte colony stimulating factor (G-CSF) concentrations in patients with rheumatoid arthritis. Clin Exp Rheumatol 18(6), 713-718. Herrmann, F., Cannistra, S.A., and Griffin, J.D. (1986). T cell-monocyte interactions in the production of humoral factors regulating human granulopoiesis in vitro. J Immunol 136, 2856-2861. Ho, P.-C., Gupta, P., Tsui, Y.-C., Ha, S.G., Huq, M., and Wei, L.-N. (2008). Modulation of lysine acetylation-stimulated repressive activity by Erk2-mediated phosphorylation of RIP140 in adipocyte differentiation. Cellular Signalling 20, 1911-1919. Hsu, W., Kerppola, T.K., Chen, P.L., Curran, T., and Chen-Kiang, S. (1994). Fos and Jun repress transcription activation by NF-IL6 through association at the basic zipper region. Mol Cell Biol 14, 268-276. Hu, S., Xie, Z., Onishi, A., Yu, X., Jiang, L., Lin, J., Rho, H.-s., Woodard, C., Wang, H., Jeong, J.-S., et al. (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139(3), 610-622. Koeffler, H.P., Gasson, J., Ranyard, J., Souza, L., Shepard, M., and Munker, R. (1987). Recombinant human TNF alpha stimulates production of granulocyte colony- stimulating factor. Blood 70, 55-59. Koeffler, H.P., Gasson, J., and Tobler, A. (1988). Transcriptional and posttranscriptional modulation of myeloid colony-stimulating factor expression by tumor necrosis factor and other agents. Mol Cell Biol 8, 3432-3438. Kovacs, K.A., Steinmann, M., Magistretti, P.J., Halfon, O., and Cardinaux, J.-R. (2003). CCAAT/Enhancer-binding Protein Family Members Recruit the Coactivator CREB-binding Protein and Trigger Its Phosphorylation. J Biol Chem 278, 36959-36965. LeClair, K.P., Blanar, M.A., and Sharp, P.A. (1992). The p50 subunit of NF-kappa B associates with the NF-IL6 transcription factor. Proc Natl Acad Sci USA 89, 8145-8149. Leizer, T., Cebon, J., Layton, J.E., and Hamilton, J.A. (1990). Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor. Blood 76, 1989-1996. Lieschke, G.J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K.J., Basu, S., Zhan, Y.F., and Dunn, A.R. (1994). Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737-1746. Lloyd, A. (2006). Distinct functions for ERKs? J Biol 5, 13. M, O., Takeuchi, M., Maruki, R., Nakajima, H., and Miyake, H. (2007). FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice. Naunyn Schmiedebergs Arch Pharmacol 374(4), 311-316. Malumbres, and Marcos (2003). RAS oncogenes: the first 30 years. Nature 3, 459-465. Mazzucchelli, C., Vantaggiato, C., Ciamei, A., Fasano, S., Pakhotin, P., Krezel, W., Welzl, H., Wolfer, D.P., Pages, G., Valverde, O., et al. (2002). Knockout of ERK1 MAP Kinase Enhances Synaptic Plasticity in the Striatum and Facilitates Striatal-Mediated Learning and Memory. Neuron 34, 807-820. Medzhitov, R., and Janeway Jr, C.A. (1997). Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9, 4-9. Mink, S., Haenig, B., and Klempnauer, K.H. (1997). Interaction and functional collaboration of p300 and C/EBPbeta. Mol Cell Biol 17, 6609-6617. Montagut, C., and Settleman, J. (2009). Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Lett 283, 125-134. Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., et al. (1986). Molecular cloning and expression of cDNA for human granulocyte colony-stimulating factor. Nature 319, 415-418. Nakajima, T., Kinoshita, S., Sasagawa, T., Sasaki, K., Naruto, M., Kishimoto, T., and Akira, S. (1993). Phosphorylation at threonine-235 by a ras-dependent mitogen-activated protein kinase cascade is essential for transcription factor NF-IL6. Proc Natl Acad Sci USA 90, 2207-2211. Nelson, M.L., Kang, H.-S., Lee, G.M., Blaszczak, A.G., Lau, D.K.W., McIntosh, L.P., and Graves, B.J. (2010). Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP. Proc Natl Acad Sci USA 107, 10026-10031. Nicola, N.A., Metcalf, D., Matsumoto, M., and Johnson, G.R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J Biol Chem 258, 9017-9023. Ohori, M. (2008). ERK inhibitors as a potential new therapy for rheumatoid arthritis. Drug News Perspect 21(5), 245-250. Osada, S., Yamamoto, H., Nishihara, T., and Imagawa, M. (1996). DNA Binding Specificity of the CCAAT/Enhancer-binding Protein Transcription Factor Family. J Biol Chem 271, 3891-3896. Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Granulocyte-macrophage colony-stimulating factor (CSF) and multilineage CSF recruit human monocytes to express granulocyte CSF. Blood 73, 64-67. Pages, G., and Pouyssegur, J. (2004). Study of MAPK signaling using knockout mice. Methods Mol Biol 250, 155-166. Pajkrt, D., Manten, A., van der Poll, T., Tiel-van Buul, M.M.C., Jansen, J., Wouter ten Cate, J., and J.H. van Deventer, S. (1997). Modulation of Cytokine Release and Neutrophil Function by Granulocyte Colony-Stimulating Factor During Endotoxemia in Humans. Blood 90, 1415-1424. Pj, R., and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22), 3291-3310. Poli, V. (1998). The Role of C/EBP Isoforms in the Control of Inflammatory and Native Immunity Functions. J Biol Chem 273, 29279-29282. Poli, V., Mancini, F.P., and Cortese, R. (1990). IL-6DBP, a nuclear protein involved in interleukin-6 signal transduction, defines a new family of leucine zipper proteins related to CEBP. Cell 63, 643-653. Ro, L.-S., Chen, S.-R., Chao, P.-K., Lee, Y.-L., and Lu, K.-T. (2009). The potential application of granulocyte colony stimulating factor therapy on neuropathic pain. Rodriguez, J., and Crespo, P. (2011). Working Without Kinase Activity: Phosphotransfer-Independent Functions of Extracellular Signal-Regulated Kinases. Sci Signal 4. Schneider, A., Kruger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., Gassler, N., Mier, W., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098. Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M., and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol 10, 2950-2959. Shi, L., Kishore, R., McMullen, M.R., and Nagy, L.E. (2002). Lipopolysaccharide stimulation of ERK1/2 increases TNF-α production via Egr-1. Am J Physiol Cell Physiol 282, C1205-1211. Shuman, J.D., Sebastian, T., Kaldis, P., Copeland, T.D., Zhu, S., Smart, R.C., and Johnson, P.F. (2004). Cell Cycle-Dependent Phosphorylation of C/EBPβ Mediates Oncogenic Cooperativity between C/EBPβ and H-RasV12. Mol Cell Biol 24, 7380-7391. Stossi, F., an, Z.M.-E., and Katzenellenbogen, B. (2012). Macrophage-elicited loss of estrogen receptor-alpha in breast cancer cells via involvement of MAPK and c-Jun at the ESR1 genomic locus. Oncogene 31, 1825-1834. Su, S.C., Hua, K.F., Lee, H., Chao, L.K., Tan, S.K., Yang, S.F., and Hsu, H.Y. (2006). LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta 374, 106-115. Tahirov, T.H., Inoue-Bungo, T., Morii, H., Fujikawa, A., Sasaki, M., Kimura, K., Shiina, M., Sato, K., Kumasaka, T., Yamamoto, M., et al. (2001). Structural Analyses of DNA Recognition by the AML1/Runx-1 Runt Domain and Its Allosteric Control by CBFβ. Cell 104, 755-767. Tahirov, T.H., Sato, K., Ichikawa-Iwata, E., Sasaki, M., Inoue-Bungo, T., Shiina, M., Kimura, K., Takata, S., Fujikawa, A., Morii, H., et al. (2002). Mechanism of c-Myb–C/EBPβ Cooperation from Separated Sites on a Promoter. Cell 108, 57-70. Tengku-Muhammad, T.S., Hughes, T.R., Ranki, H., Cryer, A., and Ramji, D.P. (2000). DIFFERENTIAL REGULATION OF MACROPHAGE CCAAT-ENHANCER BINDING PROTEIN ISOFORMS BY LIPOPOLYSACCHARIDE AND CYTOKINES. Cytokine 12, 1430-1436. Tsai, K.-J., Tsai, Y.-C., and Shen, C.-K.J. (2007). G-CSF rescues the memory impairment of animal models of Alzheimer's disease. J Exp Med 204, 1273-1280. Vallejo, M., Ron, D., Miller, C.P., and Habener, J.F. (1993). C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc Natl Acad Sci USA 90, 4679-4683. Vellenga, E., Rambaldi, A., Ernst, T.J., Ostapovicz, D., and Griffin, J.D. (1988). Independent regulation of M-CSF and G-CSF gene expression in human monocytes. Blood 71, 1529-1532. Waight, J.D., Hu, Q., Miller, A., Liu, S., and Abrams, S.I. (2011). Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism. PLoS ONE 6, e27690. Weiss, M., Moldawer, L.L., and Schneider, E.M. (1999). Granulocyte Colony-Stimulating Factor to Prevent the Progression of Systemic Nonresponsiveness in Systemic Inflammatory Response Syndrome and Sepsis. Blood 93, 425-439. Wieser, M., Bonifer, R., Oster, W., Lindemann, A., Mertelsmann, R., and Herrmann, F. (1989). Interleukin-4 induces secretion of CSF for granulocytes and CSF for macrophages by peripheral blood monocytes. Blood 73, 1105-1108. Yao, Y., Li, W., Wu, J., Germann, U.A., Su, M.S.S., Kuida, K., and Boucher, D.M. (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proceedings of the National Academy of Sciences 100, 12759-12764. Yoon, S., and Seger, R. (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 24, 21-44. Zehorai, E., Yao, Z., Plotnikov, A., and Seger, R. (2010). The subcellular localization of MEK and ERK—A novel nuclear translocation signal (NTS) paves a way to the nucleus. Molecular and Cellular Endocrinology 314, 213-220. Zhang, L., Yang, M., Wang, Q., Liu, M., Liang, Q., Zhang, H., and Xiao, X. (2011). HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 352, 11-17. Zhu, S., Yoon, K., Sterneck, E., Johnson, P.F., and Smart, R.C. (2002). CCAAT/enhancer binding protein-β is a mediator of keratinocyte survival and skin tumorigenesis involving oncogenic Ras signaling. Proc Natl Acad Sci USA 99, 207-212. Zsebo, K.M., Yuschenkoff, V.N., Schiffer, S., Chang, D., McCall, E., Dinarello, C.A., Brown, M.A., Altrock, B., and Bagby, G.C., Jr. (1988). Vascular endothelial cells and granulopoiesis: interleukin-1 stimulates release of G-CSF and GM-CSF. Blood 71, 99-103. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65332 | - |
| dc.description.abstract | 顆粒性白血球群落刺激因子(granulocyte-colony stimulating factor, G-CSF)是一個可調控嗜中性白血球與巨噬細胞生長與分化的分泌型細胞激素,可在血管內皮細胞與巨噬細胞等受到免疫刺激(如LPS)時分泌。類風濕性關節炎患者具高度內生性的G-CSF表現,而過量的G-CSF表現可能是引起發炎部位的白血球侵入的原因。並且在一些較會轉移的癌細胞中G-CSF的表現也比不易轉移的癌細胞以及正常細胞高,這些研究都顯示瞭解G-CSF的調控對相關疾病的治療策略是相當重要。
我們實驗室先前發現在人類單核球細胞與小鼠巨噬細胞,被LPS所誘導的G-CSF皆可被MEK1/2抑制劑(U0126及PD98059)所抑制,顯示MEK/ERK 訊息傳遞在調控G-CSF表現扮演重要角色。因為U0126會同時抑制ERK1與ERK2的活性,因此我利用帶有shRNA的慢病毒專一性地knockdown THP-1細胞的 ERK1或ERK2,我們發現由LPS刺激G-CSF的表現,會於knockdown ERK2時下降;而knockdown ERK1則沒太大的影響。並且在帶有G-CSF啟動子調控的螢火蟲冷光酶報導基因的細胞中同時轉染能表現持續活化的ERK2 (CA-ERK2) 的質體時,可增加冷光酶活性; 此現象會在將G-CSF啟動子上C/EBPβ的結合位置做突變時減少, 顯示ERK2和C/EBPβ對於G-CSF調控扮演重要的角色。 然而C/EBPβ和ERK2的參與並不足以解釋U0126對G-CSF基因表達的影響。我們發現將C/EBPβ可磷酸化的位置Thr 188突變成Ala,會降低G-CSF啟動子活性約三成,這與預處理U0126使G-CSF mRNA幾乎完全被抑制的情形不同。因此我們推測應該還有其他因子參與其中。過去研究發現MEK/ERK訊息傳遞可改變染色質結構,以染色質免疫沉澱法分析,我們發現在U0126預處理下,結合到G-CSF啟動子上的轉錄因子 (如C/EBPβ、NF-κB及p65等) 大幅減少,故我們推測ERK2可能是透過影響染色質結構來調控G-CSF的表達。因此我們利用脫氧核糖核酸酶 (DNase I) 敏感度實驗評估染色質結構的變化,在LPS刺激下,G-CSF啟動子受到DNase I切割的程度於預處理U0126及knockdown ERK2時明顯下降,顯示ERK2的活化與G-CSF啟動子的染色質結構變化有關。但ERK2是如何調控G-CSF啟動子的染色質結構變化仍不清楚,有待後續實驗探討。由於G-CSF的表現與一些發炎疾病有關,這個研究的發現將有助於研發抑制G-CSF的藥物用於治療相關的疾病。 | zh_TW |
| dc.description.abstract | Granulocyte colony-stimulating factor (G-CSF) is an extracellular cytokine that controls the production and differentiation of granulocytes and macrophages. When endothelial cells and macrophages expose to inflammatory stimuli (such as lipopolysaccharide, LPS), they secret significant amout of G-CSF. Moreover, high expression level of G-CSF has been found in rheumatoid arthritis (RA) and in most malignant cancers. In addition, G-CSF expression is reported to be associated with recruitment of leukocytes into the inflammatory sites, and possibily associated with cancer cell invasion. These results suggested that understanding the regulation of G-CSF expression is important.
Our previous studies showed that the expression of G-CSF in LPS-induced macrophages could be downregulated by MEK1/2 inhibitors (U0126 and PD98059). These results suggest that LPS-induced G-CSF expression through a MEK/ERK dependent pathway in macrophages. Because U0126 inhibits both ERK1 and ERK2, thus it is unclean which ERK is involved in G-CSF expression. In this study, we investigated the functional roles of ERKs in THP-1 macrophage cell line by specifically knocking down ERK1 or ERK2 with lentivirus carrying shRNA. ERK2 knockdown, but not ERK1, resulted in reduction of LPS-induced G-CSF mRNA expression. Furthermore, co-transfect G-CSF promoter-Luciferase reporter plasmid with constitutive active-ERK2 (CA-ERK2) resulted in an increase in luciferase activity. This effect was abolished when the C/EBPβ binding site on the G-CSF promoter was mutated. These results suggest that both ERK2 and C/EBPβ play important roles in G-CSF regulation. However, the interaction between ERK2 and C/EBPβ is not enough to explain the inhibitory effects of U0126 on G-CSF gene expression. We found that G-CSF promoter activity was reduced by 30%-40% with C/EBPβ T188A mutant. However, pretreatment with U0126 results in over 95% inhibition on LPS-induced G-CSF mRNA. Therefore, we considered that other factors may involve in the regulation of G-CSF expression in the downstream of ERK2. Recent studies showed that MEK/ERK signal pathway is involved in chromatin remodeling. In chromatin immunoprecipition (ChIP) assay, we found that U0126 prevented binding of transcription factors (C/EBPβ, NF-κB and p65, etc) onto the G-CSF promoter in response to LPS stimulation. Thus, we speculate that ERK2 may regulate LPS-induced G-CSF expression through changing of chromatin structure. By using DNase I accessibility assay, we found that LPS-induced accessibility of G-CSF promoter to DNase I digestion is reduced in ERK2 knockdown cells than in the control and ERK1 knockdown cells. These results suggest that activation of ERK2 may change chromaten remodeling. However, it is unclear how ERK2 regulates chromatin remodeling in G-CSF promoter. Because the expression of G-CSF has been associated with inflammatory diseases, the finding in this study may help development of new drugs to inhibit G-CSF expression in related diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:36:59Z (GMT). No. of bitstreams: 1 ntu-101-R99442004-1.pdf: 5240169 bytes, checksum: 81b61420833c83e57997be966d796c00 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
序言 ii 中文摘要 iii Abstract v 第一章 緒論 1 第一節 文獻探討 2 第一段、顆粒性白血球群落刺激因子(Granulocyte-colony stimulating factor, G-CSF) 2 第二段、脂多醣 (lipopolysaccharide, LPS) 的訊息傳遞 5 第三段、Mitogen-activated protein kinase (MAPK) 的訊息傳遞 6 第四段、C/EBPβ (NF-IL6, IL-6DBP, LAP, CRP2, NF-M) 9 第二節 實驗動機與目的 11 第二章 材料與方法 12 第一節 實驗材料 13 第二節 細胞培養 14 第三節 分析螢火蟲冷光蛋白酶 (Luciferase) 的活性 15 暫時性轉染(Transient Transfection) RAW264.7細胞 15 Luciferase activity assay 15 第四節 製備慢病毒 (Lentivirus) 16 質體資訊 (專一性抑制ERK1或ERK2) 17 暫時性轉染 (Transient Transfection) 293T細胞 19 收取合成好的慢病毒 20 慢病毒的感染 20 第五節 細胞mRNA表現分析 20 第六節 酵素結合免疫吸附法 (Enzyme-Linked ImmunoSorbent Assay, ELISA) 22 第七節 西方點墨法 (Western blotting) 23 第八節 脫氧核酸核醣酶敏感度實驗 (DNase I accessibility assay ) 26 第九節 DNA親和力沈澱分析法 (DNA affinity precipitation assay, DAPA) 28 第十節 質體製備 29 p3xFlag-mC/EBPbeta-CDS 30 p3xFlag-mC/EBPbeta-T188A 31 pGL3-basic-mGCSFp of CEBPbeta mutant 33 第十一節 即時定量聚合酶連鎖反應 (Real-time quantitative PCR) 34 第十二節 引子資訊 35 第三章 實驗結果 36 第一節、LPS 誘導巨噬細胞內G-CSF表達是透過MEK/ERK pathway 37 第二節、G-CSF的調控機制在RAW264.7與THP-1細胞株中相當相似 37 第三節、ERK2對於由LPS 誘導G-CSF的表達是重要的 38 第四節、 預處理U0126可使G-CSF啟動子纏繞較緊密 38 第五節、 LPS誘導G-CSF的機制並非透過ERK直接結合至啟動子 39 第六節、 C/EBPβ 具有部分程度的重要性於G-CSF的調控中 40 第七節、 MSK1/2並不參與由LPS誘導G-CSF的調控 40 第八節、 p300可能參與由LPS誘導G-CSF的調控 41 第九節、 推測由LPS誘導G-CSF的調控的可能機制 42 第四章 討論 43 第一節、 G-CSF 在巨噬細胞受到LPS刺激的表達主要受到ERK2所調控 44 第二節、 ERK1與ERK2的異同之處 44 第三節、 由LPS誘導G-CSF啟動子染色質結構的改變是透過ERK2 45 第四節、 ERK2調控G-CSF基因表達的重要性於癌細胞 46 第五節、 MEK/ERK抑制劑應用的評估 47 第六節、 總結 48 第五章 圖表 49 參考文獻 68 附錄 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | ERK2 | zh_TW |
| dc.subject | MEK1/2抑制劑U0126 | zh_TW |
| dc.subject | ERK1 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | DNase I敏感度實驗 | zh_TW |
| dc.subject | C/EBPβ | zh_TW |
| dc.subject | 顆粒性白血球群落刺激因子 | zh_TW |
| dc.subject | Macrophage | en |
| dc.subject | DNase I accessibility assay | en |
| dc.subject | ERK1 | en |
| dc.subject | ERK2 | en |
| dc.subject | G-CSF | en |
| dc.subject | C/EBPβ | en |
| dc.subject | U0126 | en |
| dc.title | ERK2在LPS誘導巨噬細胞G-CSF表現的角色 | zh_TW |
| dc.title | Roles of ERK2 in LPS-induced G-CSF expression in macrophage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張淑芬,繆希椿,余明俊 | |
| dc.subject.keyword | C/EBPβ,DNase I敏感度實驗,ERK1,ERK2,顆粒性白血球群落刺激因子,巨噬細胞,MEK1/2抑制劑U0126, | zh_TW |
| dc.subject.keyword | C/EBPβ,DNase I accessibility assay,ERK1,ERK2,G-CSF,Macrophage,U0126, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
