請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金 | |
| dc.contributor.author | Shu-Min Chou | en |
| dc.contributor.author | 周書民 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:36:20Z | - |
| dc.date.available | 2015-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-26 | |
| dc.identifier.citation | Alexander, G.E., Crutcher, M.D. & DeLong, M.R. (1991) Chapter 6 Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. 85, 119-146.
Aman, T.K., Grieco-Calub, T.M., Chen, C., Rusconi, R., Slat, E.A., Isom, L.L. & Raman, I.M. (2009) Regulation of Persistent Na Current by Interactions between Subunits of Voltage-Gated Na Channels. Journal of Neuroscience, 29, 2027-2042. Bant, J.S. & Raman, I.M. (2010) Control of transient, resurgent, and persistent current by open-channel block by Na channel β4 in cultured cerebellar granule neurons. Proceedings of the National Academy of Sciences, 107, 12357-12362. Bergman, H., Wichmann, T. & DeLong, M. (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science, 249, 1436-1438. Bowie, D. & Mayer, M.L. (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron, 15, 453-462. Castelli, L., Nigro, M.J. & Magistretti, J. (2007) Analysis of resurgent sodium-current expression in rat parahippocampal cortices and hippocampal formation. Brain Research, 1163, 44-55. Chen, Y., Yu, F.H., Sharp, E.M., Beacham, D., Scheuer, T. & Catterall, W.A. (2008) Functional properties and differential neuromodulation of Nav1.6 channels. Molecular and Cellular Neuroscience, 38, 607-615. Cruz, J.S., Silva, D.F., Ribeiro, L.A., Araújo, I.G.A., Magalhães, N., Medeiros, A., Freitas, C., Araujo, I.C. & Oliveira, F.A. (2011) Resurgent Na+ current: A new avenue to neuronal excitability control. Life Sciences, 89, 564-569. de Miera, E.V.-S., Rudy, B., Sugimori, M. & Llinás, R. (1997) Molecular characterization of the sodium channel subunits expressed in mammalian cerebellar Purkinje cells. Proceedings of the National Academy of Sciences, 94, 7059-7064. Deuschl, G., Wenzelburger, R., Kopper, F. & Volkmann, J. (2003) Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: a therapy approaching evidence-based standards. Journal of Neurology, 250, i43-i46. Do, M.T.H. & Bean, B.P. (2003) Subthreshold Sodium Currents and Pacemaking of Subthalamic Neurons: Modulation by Slow Inactivation. Neuron, 39, 109-120. Eaholtz, G., Colvin, A., Leonard, D., Taylor, C. & Catterall, W.A. (1999) Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate. The Journal of General Physiology, 113, 279-294. Felts, P.A., Yokoyama, S., Dib-Hajj, S., Black, J.A. & Waxman, S.G. (1997) Sodium channel α-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Molecular Brain Research, 45, 71-82. Fry, M. (2006) Developmental expression of Na+ currents in mouse Purkinje neurons. European Journal of Neuroscience, 24, 2557-2566. Goldin, A.L. (2001) Resurgence of sodium channel research. Annu. Rev. Physiol., 63, 871–894. Grieco, T.M., Afshari, F.S. & Raman, I.M. (2002) A Role for Phosphorylation in the Maintenance of Resurgent Sodium Current in Cerebellar Purkinje Neurons. The Journal of Neuroscience, 22, 3100-3107. Grieco, T.M., Malhotra, J.D., Chen, C., Isom, L.L. & Raman, I.M. (2005) Open-Channel Block by the Cytoplasmic Tail of Sodium Channel β4 as a Mechanism for Resurgent Sodium Current. Neuron, 45, 233-244. Gulbis, J.M., Zhou, M., Mann, S. & MacKinnon, R. (2000) Structure of the Cytoplasmic β Subunit--T1 Assembly of Voltage-Dependent K+ Channels. Science, 289, 123-127. Hirschberg, B., Rovner, A., Lieberman, M. & Patlak, J. (1995) Transfer of twelve charges is needed to open skeletal muscle Na+ channels. The Journal of General Physiology, 106, 1053-1068. Hodgkin, A. & Huxley, A. (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bulletin of Mathematical Biology, 52, 25-71. J W West, D.E.P., T Scheuer, Y Wang, A L Goldin, and W A Catterall (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc. Natl. Acad. Sci. USA, 89, 10910-10914. Kuo, C.-C. & Bean, B.P. (1994) Na+ channels must deactivate to recover from inactivation. Neuron, 12, 819-829. Kuo, C.-C., Chen, W.-Y. & Yang, Y.-C. (2004) Block of Tetrodotoxin-resistant Na+ Channel Pore by Multivalent Cations. The Journal of General Physiology, 124, 27-42. Lewis, A.H. & Raman, I.M. (2011) Cross-Species Conservation of Open-Channel Block by Na Channel β4 Peptides Reveals Structural Features Required for Resurgent Na Current. The Journal of Neuroscience, 31, 11527-11536. Llinás, R. & Sugimori, M. (1980) Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology, 305, 197-213. Marchand, R. (1987) Histogenesis of the subthalamic nucleus. Neuroscience, 21, 183-195. McPhee, J.C., Ragsdale, D.S., Scheuer, T. & Catterall, W.A. (1995) A Critical Role for Transmembrane Segment IVS6 of the Sodium Channel Subunit in Fast Inactivation. Journal of Biological Chemistry, 270, 12025-12034. McPhee, J.C., Ragsdale, D.S., Scheuer, T. & Catterall, W.A. (1998) A Critical Role for the S4-S5 Intracellular Loop in Domain IV of the Sodium Channel α-Subunit in Fast Inactivation. Journal of Biological Chemistry, 273, 1121-1129. Nambu, A., Tokuno, H. & Takada, M. (2002) Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43, 111-117. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, 312, 121-127. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature, 307, 462-465. Pongs, O. (1992) Molecular biology of voltage-dependent potassium channels. Physiological reviews, 72, S69-S88. Posturna, R.B. & Lang, A.E. (2003) Hemiballism: revisiting a classic disorder. The Lancet Neurology, 2, 661-668. Raman, I.M. & Bean, B.P. (1997) Resurgent Sodium Current and Action Potential Formation in Dissociated Cerebellar Purkinje Neurons. The Journal of Neuroscience, 17, 4517-4526. Raman, I.M. & Bean, B.P. (2001) Inactivation and Recovery of Sodium Currents in Cerebellar Purkinje Neurons: Evidence for Two Mechanisms. Biophysical Journal, 80, 729-737. Rettig, J., Heinemann, S.H., Wunder, F., Lorra, C., Parcej, D.N., Oliver Dolly, J. & Pongs, O. (1994) Inactivation properties of voltage-gated K+ channels altered by presence of [beta]-subunit. Nature, 369, 289-294. Smith, M.R. & Goldin, A.L. (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophysical Journal, 73, 1885-1895. Terlau, H., Heinemann, S.H., Stühmer, W., Pusch, M., Conti, F., Imoto, K. & Numa, S. (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Letters, 293, 93-96. Theile, J.W., Jarecki, B.W., Piekarz, A.D. & Cummins, T.R. (2011) Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navβ4 peptide-mediated resurgent sodium currents. The Journal of Physiology, 589, 597-608. Townsend, C. & Horn, R. (1997) Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels. The Journal of General Physiology, 110, 23-33. Vilin, Y. & Ruben, P. (2001) Slow inactivation in voltage-gated sodium channels. Cell Biochemistry and Biophysics, 35, 171-190. Wallner, M., Meera, P. & Toro, L. (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: A transmembrane β-subunit homolog. Proceedings of the National Academy of Sciences, 96, 4137-4142. Yu, F.H., Westenbroek, R.E., Silos-Santiago, I., McCormick, K.A., Lawson, D., Ge, P., Ferriera, H., Lilly, J., DiStefano, P.S., Catterall, W.A., Scheuer, T. & Curtis, R. (2003) Sodium Channel β4, a New Disulfide-Linked Auxiliary Subunit with Similarity to β2. The Journal of Neuroscience, 23, 7577-7585. Zamponi, G.W. & French, R.J. (1994) Open-channel block by internally applied amines inhibits activation gate closure in batrachotoxin-activated sodium channels. Biophysical Journal, 67, 1040-1051. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65319 | - |
| dc.description.abstract | 神經的可興奮性在神經系統的激發特性上可說是相當重要的機制之一,而此一特性則與細胞膜上所表現的各種離子通道息息相關。在這眾多的離子通道之中,鈉離子通道所扮演的角色尤其顯著。近來的研究發現,有別於傳統認知上所定義的不活化路徑,回返性鈉離子電流經由一種受細胞內生性物質所誘發的路徑完成去活化過程,而此一機制提供了額外的閾下電流,進而促成了神經細胞去極化的產生。Raman和Bean在2001提出了一個模式圖,透過此一內生性物質的概念來闡述回返性鈉離子電流的形成機制。雖然,此一模式圖替這種在鈉離子通道不活化後依然產生的漏電現象提出了解釋,卻無法給與回返性電流發生之分子機制一個周延的說明,更多鈉離子通道相關的分子特性也依然有待釐清。在本論文中,我們將焦點著重於視丘下核的神經細胞上。此一神經核區與基底核在功能運作上息息相關,並且已被發現有回返性鈉離子電流的表現。為了瞭解回返性鈉離子電流的電生理特性,實驗中透過改變去極化與再極化的電位來觀察回返性鈉離子電流受電位變化調控的狀態。進一步藉由改變去極化的間期,觀察慢速不活化對於回返性鈉離子電流的影響。同時,透過不同電位下回返性電流的衰退常數,配合鈉電流回復曲線等來推測通道開啟態與抑制態之間的速率常數關係。此外,我們也探討了胞外多價陽離子對於回返性鈉電流的抑制作用,發現此一作用要遠比對於暫時性鈉電流(在前置去極化時見到之鈉電流)之抑制來得顯著。我們因此提出,回返性鈉電流應牽涉到一更大格局之鈉離子通道型態變化。此一變化應至少含括另一個不同於傳統活化態(較傳統開啟狀態不易活化)的開啟狀態,而非僅只由不同於通道不活化之阻塞作用所造成。 | zh_TW |
| dc.description.abstract | Excitability is important for the firing properties of nervous system and is determined by the expression of different types of ion channels on the cell membrane. The sodium channels especially play a crucial role in membrane excitability. Recent studies indicate that an endogenous particle could evoke a so-called resurgent sodium current (I NaR) with a pore blocking mechanism different from classical inactivation and thus generate sodium current during the repolarization phase following depolarization of neurons. Although this model explained the occurrence of sodium current during the repolarization phase, it seemed to be less adequate in the interpretation of some major aspects of I NaR. In this study, we focus on subthalamic nucleus neurons which are functionally in close association with basal ganglia and consistently show I NaR . Membrane potential was stepped to different voltages and the result reflected that I NaR is dependent on not only the voltage of the repolarization phase but also the voltage and duration of the preceding depolarization phase. These findings are not completely compatible with the current model proposed by Raman and Bean. Furthermore, the extracellular Lanthanum and Cadmium were found to affect I NaR more than I NaT (the transient sodium current elicited in the preceding depolarization phase). We maintain that the sodium channel necessarily contains more than one open state for the molecular mechanism underlying the genesis of I NaR and a new model is forwarded accordingly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:36:20Z (GMT). No. of bitstreams: 1 ntu-101-R99441012-1.pdf: 2954871 bytes, checksum: 5ce7fd3fc9be942a6d3a48900dd57b3b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書…………………………………………………… i
誌謝 ………………………………………………………………… ii 中文摘要 …………………………………………………………… iii 英文摘要 …………………………………………………………… iv 第一章 導論…………………………………………………………… 1 1.1電位依賴性鈉離子通道之功能與結構………………………1 1.2回返性鈉離子電流…………………………………………………3 1.3視丘下神經核與回返性鈉離子電流…………………………9 第二章 材料與方法……………………………………………………11 2.1 游離神經細胞的製備………………………………………………11 2.2 玻璃微電極之製備…………………………………………………12 2.3 加藥管之製備………………………………………………………12 2.4 游離神經全細胞電生理紀錄………………………………………12 2.5 數據分析與處理……………………………………………………14 第三章 結果……………………………………………………………15 3.1 電位變化對於回返性鈉離子電流特性之影響……………………15 3.2 去極化時間對於回返性鈉離子電流特性之影響…………………17 3.3 多價陽離子對於回返性鈉離子電流特性之影響…………………18 第四章 討論…………………………………………………………… 21 4.1 回返性鈉電流受電位變化之影響…………………………………21 4.2 回返性鈉電流與慢速不活化………………………………………24 4.3 多價陽離子抑制對回返性鈉電流之影響…………………………25 4.4 內生性物質假說之適切性…………………………………………27 圖次 ……………………………………………………………………28 參考文獻 ………………………………………………………………44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鎘離子 | zh_TW |
| dc.subject | 鈉離子通道 | zh_TW |
| dc.subject | 回返性鈉離子電流 | zh_TW |
| dc.subject | 鑭離子 | zh_TW |
| dc.subject | 視丘下核 | zh_TW |
| dc.subject | Sodium channel | en |
| dc.subject | Lanthanum | en |
| dc.subject | Cadmium | en |
| dc.subject | Subthalamic nucleus | en |
| dc.subject | Sodium resurgent current | en |
| dc.title | 視丘下核神經元上回返性鈉離子電流生物物理特性之探討 | zh_TW |
| dc.title | The Biophysical Properties of Resurgent Sodium Current in Subthalamic Nucleus Neurons | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃榮棋,楊雅晴,湯志永 | |
| dc.subject.keyword | 鈉離子通道,回返性鈉離子電流,視丘下核,鎘離子,鑭離子, | zh_TW |
| dc.subject.keyword | Sodium channel,Sodium resurgent current,Subthalamic nucleus,Cadmium,Lanthanum, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
