Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65316
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭典翰
dc.contributor.authorLi-Wei Chenen
dc.contributor.author陳理為zh_TW
dc.date.accessioned2021-06-16T23:36:09Z-
dc.date.available2020-02-24
dc.date.copyright2020-02-24
dc.date.issued2020
dc.date.submitted2020-02-20
dc.identifier.citationAgarwal, A., Loder, S. J., Brownley, C., Eboda O., Peterson, J., Hayano, S., Wu, B., Zao, B., Kaartinen, V., Wong, V. C., Mishina, Y., & Levi, B. (2016). BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev Biol, 400(2), 202–209. doi: 10.1016/j.ydbio.2015.02.011.
Bier, E. (2011). Evolution of Development: Diversified Dorsoventral Patterning. Curr Biol, 21(15), R591-4. doi: 10.1016/j.cub.2011.06.037.
Chen, D., Zhao, M., & Mundy, G. R. (2004). Bone Morphogenetic Proteins. Growth Factors, 22(4), 233-241, doi: 10.1080/08977190412331279890.
Dale, L., & Wardle, F. C. (1999). A gradient of BMP activity specifies dorsal–ventral fates in early Xenopus embryos. Semin Cell Dev Biol, 10(3), 319-26. doi: 10.1006/scdb.1999.0308.
De Robertis, E. M., Moriyama, Y., & Colozza, G. (2017). Generation of animal form by the Chordin/Tolloid/BMP gradient: 100 years after D'Arcy Thompson. Dev Growth Differ, 59(7), 580-592. doi: 10.1111/dgd.12388.
De Robertis, E. M. (2008). Evo-devo: variations on ancestral themes. Cell, 132(2), 185-95. doi: 10.1016/j.cell.2008.01.003.
Desjeux, I., & Price, D. J. (1999). The production and elimination of supernumerary blast cells in the leech embryo. Dev Genes Evol, 209(5), 284-93. doi: 10.1007/s004270050254.
Dinther, M. V., Visser, N., Gorter, D. J., Doorn, J., Gouman,s M. J., Boer J., & Dijke, P. T. (2010). ALK2 R206H Mutation Linked to Fibrodysplasia Ossificans Progressiva Confers Constitutive Activity to the BMP Type I Receptor and Sensitizes Mesenchymal Cells to BMP-Induced Osteoblast Differentiation and Bone Formation. J Bone Miner Res, 25(6), 1208-15. doi: 10.1359/jbmr.091110.
Doll, N. (2014). Control of dorsal mesoderm specification in Drosophila melanogaster by transcription factors networks. BioSciences Master Reviews.
Foletta, V. C., Lim, M. A., Soosairaiah, J. Kelly, A. P., Stanley, E. G., Shannon, M., He, W., Das, S., Massague, J., & Bernard, O. (2003). Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol, 162(6), 1089-98. doi: 10.1083/jcb.200212060.
Gamez, B., Rodriguez-Carballo, E., Ventura, F. (2013). BMP signaling in telencephalic neural cell specification and maturation. Front Cell Neurosci, 7, 87. doi: 10.3389/fncel.2013.00087.
Gline, S. E., Kuo, D. H., Stolfi, A., & Weisblat, D. A. (2009). High resolution, plasmid-driven cell lineage tracing reveals developmental variability in leech. Dev Dyn, 238(12), 3139–3151. doi: 10.1002/dvdy.22158.
Gline, S. E., Nakamoto, A., Cho, S. J., Chi, C., & Weisblat, D. A. (2011). Lineage analysis of micromere 4d, a super-phylotypic cell for Lophotrochozoa, in the leech Helobdella and the sludgeworm Tubifex. Dev Biol, 353(1), 120-33. doi: 10.1016/j.ydbio.2011.01.031.
Graff, J. M. (1997). Embryonic patterning: to BMP or not to BMP, that is the question. Cell, 89(2), 171-4. doi: 10.1016/s0092-8674(00)80196-8.
Hampton, K. S., Hoffmann, F. M., Baylies, M. K., Rushton E., & Bate, M. (1994). dpp induces mesodermal gene expression in Drosophila. Nature, 372, 783–786. doi: 10.1038/372783a0
Hejnol, A. (2010). A Twist in Time—The Evolution of Spiral Cleavage in the Light of Animal Phylogeny. Integr Comp Biol, 50(5), 695-706. doi: 10.1093/icb/icq103.
Hodar, C., & Cambiazo, V. (2018). The dorsoventral patterning of Musca domestica embryos: insights into BMP/Dpp evolution from the base of the lower cyclorraphan flies. Evodevo, 9, 13. doi: 10.1186/s13227-018-0102-5.
Jeremy, A. L., & Siegfried, R. (2011). The evolution of dorsal–ventral patterning mechanisms in insects. Genes Dev. 25(2), 107–118. doi: 10.1101/gad.2010711.
Jones, C.M., Dale, L., Hogan, B.L., Wright, C.V., & Smith, J.C. (1996). Bone morphogenetic protein-4 (BMP-4) acts during gastrula stages to cause ventralization of Xenopus embryos. Development,122(5), 1545-54.
Kenny, N. J., Namigai, E. K., Dearden, P. K., Hui, J. H., Grande, C., & Shimeld, S. M. (2014). The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway. Int J Dev Biol, 58(6-8), 533-49. doi: 10.1387/ijdb.140080nk.
Kimelman, D., & Szeto, D. P. (2006). Chordin cleavage is sizzling. Nat Cell Biol, 8(4), 305-7. doi: 10.1038/ncb0406-305.
Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ulmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn, 203(3), 253-310. doi: 10.1002/aja.1002030302.
Kuo, D. H., Shankland M., & Weisblat D. A. (2012). Regional differences in BMP-dependence of dorsoventral patterning in the leech Helobdella. Dev Biol, 368(1), 86-94. doi: 10.1016/j.ydbio.2012.05.021.
Kuo, D. H., & Shankland, M. (2004). Evolutionary diversification of specification mechanisms within the O/P equivalence group of the leech genus Helobdella. Development, 131(23), 5859-69. doi : 10.1242/dev.01452.
Kuo, D. H., & Weisblat, D. A. (2011). A new molecular logic for BMP-mediated dorsoventral patterning, in the leech Helobdella. Curr Biol, 21(15), 1282–1288. doi: 10.1016/j.cub.2011.06.024.
Lavery, K., Swain, P., Falb, S., & Alaoul-Ismaili, M. H. (2008). BMP-2/4 and BMP-6/7 Differentially Utilize Cell Surface Receptors to Induce Osteoblastic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells. J Biol Chem, 283(30), 20948-58. doi: 10.1074/jbc.M800850200.
Lee, H. H., & Frasch, M. (2005). Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development, 132(6), 1429-42. doi: 10.1242/dev.01687
Miller-Bertoglio, V. E., Fisher, Shannon., Sanchez, Alejandro., Mullins, M. C., & Halpern, M. E. (1997). Differential Regulation of chordin Expression Domains in Mutant Zebrafish. Dev Biol, 192(2), 537-50. doi: 10.1006/dbio.1997.8788.
O’Connor, M. B., Umulis, D., Othmer, H. G., & Blair, S. S. (2006). Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing. Development, 133(2), 183-93. doi: 10.1242/dev.02214.
Pomreinke, A. P., Soh, G. H., Rogers, K. W., Bergmann, J. K., Blable, A. J., Muller, P. (2017). Dynamics of BMP signaling and distribution during zebrafish dorsal-ventral patterning. Elife, 6. pii, e25861. doi: 10.7554/eLife.25861.
Poniatowski, L. A., Wojdasiewicz, P., Gasik, R., &Szukiewicz D. (2015). Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm, 2015, 137823. doi: 10.1155/2015/137823.
Ramel, M. C., & Hill, C. S. (2012). Spatial regulation of BMP activity. FEBS Lett, 586(14), 1929-41. doi: 10.1016/j.febslet.2012.02.035.
Ramel, M. C., & Hill, C. S. (2013). The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Dev Biol, 378(2), 170-82. doi: 10.1016/j.ydbio.2013.03.003.
Shankland, M. (1984). Positional determination of supernumerary blast cell death in the leech embryo. Nature, 307(5951), 541-3. doi: 10.1038/307541a0.
Sieber, C., Kopf, J., Hiepen, C., & Knaus, P. (2009). Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev, 20(5-6), 343-55. doi: 10.1016/j.cytogfr.2009.10.007.
Spenmann, H., & Mangold, H. (2001). Induction of embryonic primordia by implantation of organizers from a different species. 1923. Int J Dev Biol, 45(1), 13-38.
Steventon, B., Araya C., Linker, C., Kuriyama, S., & Mayor, R. (2009). Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction. Development, 136, 771-779. doi:10.1242/dev.029017.
Tan, S., Haun, P., & Liu, B. (2017). Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal-ventral patterning in the mollusk Crassostrea gigas. Dev Genes Evol, 227(2), 75-84. doi: 10.1007/s00427-016-0570-3.
Urist, M. R. (1965). Bone: Formation by Autoinduction. Science, 150(3698), 893-9. doi: 10.1126/science.150.3698.893.
Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao M., Peabody M., Zhang, Q. Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis, 1(1), 87-105. doi: 10.1016/j.gendis.2014.07.005.
Weisblat, D. A., & Kuo, D. H. (2014). Developmental biology of the leech Helobdella. Int J Dev Biol, 58(0), 429–443. doi:10.1387/ijdb.140132dw.
Yuan, G., Yang, G., Zheng, Y., Zho, X., Chen, Z., Zhang, Z., & Chen, Y. (2015). The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development, 142(1), 128-39. doi: 10.1242/dev.117887.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65316-
dc.description.abstractBMP是一群廣為人知且研究深入的訊息傳遞分子,BMP在胚胎發育的過程中扮演了許多重要的角色,而胚胎背腹體軸的決定是其中最有名的一種。先前研究發現胚胎會藉由BMP與其拮抗分子形成的濃度梯度來決定背腹體軸的相對位置,許多物種橫跨了各種兩側對稱動物都是藉由這種機制來決定背腹體軸,顯示出這樣的體軸決定方式在演化上是十分保守的。在澤蛭的胚胎原腸化時期,外胚層同樣是利用BMP訊息梯度決定背腹體軸的走向,但所用的BMP並非多數物種所使用的BMP2/4s而是BMP5-8。本實驗主要想要探討這種特別的體軸決定方式是不是也適用在澤蛭的中胚層,我利用不同的方式在中胚層異位表現或抑制BMP的訊息傳遞來觀察對胚胎造成的影響。在異位表現的實驗中我將突變的BMP受器表現在中胚層中,發現此突變會強制開啟下游訊息傳遞,在這些胚胎中,胚胎細胞的細胞遷徙會受到影響,停留在動物極靠近背側的區域,無法完成原腸化。經由後續的實驗發現,此細胞遷徙的缺損是因為異常的微絲細胞骨架所造成。但當過量表現BMP5-8時以及抑制BMP下游訊息傳遞時,細胞的遷徙並未受到影響,因此Hau-BMP5-8並非中胚層細胞在原腸胚中的遷徙所需。接下來我檢驗在對BMP訊息進行操弄後,是否會影響中胚層內背腹體軸的決定。我發現Dachshund和Twist1基因會表現在中胚層的腹側,而在BMP訊息受到異位活化或者抑制的情形下,這些基因的表現位置都沒有受到影響,因此中胚層背腹方向的體軸建立並非受到BMP梯度引導。本研究發現在澤蛭原腸化時期中胚層體軸的決定乃獨立於控制外胚層體軸決定的BMP訊息調控路徑之外。zh_TW
dc.description.abstractBMP is a well-known signaling ligand that takes part in many developmental processes during embryogenesis. One of its most important roles in early embryogenesis is in the establishment of body axis. The dorsoventral body axis was found be patterned by the extracellular BMP signaling gradient, arising from the interactions between the BMP ligands and their antagonists. In the leech Helobdella, a non-canonical BMP-mediated dorsoventral patterning mechanism was found to operate in the ectoderm, where BMP5-8 is used as the key BMP ligand that provides the dorsoventral polarity in place of the commonly used BMP2/4 in other species. However, it is not clear whether BMP also patterns the dorsoventral axis of mesoderm. Here, I used various gain-of-function and loss-of-function approaches to determine whether BMP signal participate in the development of mesoderm during the gastrulation stage in the leech. When a constitutively active receptor was mis-expressed in the mesoderm, mesodermal migration was disrupted. However, mis-expression of BMP5-8 produce no comparable migration phenotype. The migration phenotype produced by the mis-expression of constitutively active receptor was caused by abnormal actin dynamics. Knockdown of BMP5-8 or mis-expression of dominant negative receptor produce no obvious cell migration phenotype. To see if BMP signaling is involved in dorsoventral patterning of cell fates in the mesoderm, I examined the expression pattern of Hau-Dach and Hau-Twist1 in embryos in which BMP signaling activity is experimentally manipulated. These marker genes are normally expressed in mesoderm. Disruption of BMP signaling in the mesoderm, however, did not disrupt the expression pattern of genes in the mesoderm, suggesting that BMP signaling is not required for the specification of dorsal and ventral mesoderm fates during gastrulation. Therefore, the migration and patterning of mesoderm in leech gastrula are controlled by mechanism that is independent of the dorsoventral BMP gradient.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:36:09Z (GMT). No. of bitstreams: 1
ntu-109-R06b21021-1.pdf: 3549816 bytes, checksum: 581217e8ecdcae648af1de14c780a1cc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審訂書 I
謝辭 II
中文摘要 III
Abstract IV
Introduction 1
Materials and methods 8
Animal 8
in situ hybridization 8
Whole-mount immunofluorescence 12
Hoechst33342 staining 13
Site directed mutagenesis 13
in vitro RNA transcription 15
Microinjection for RNA overexpression and lineage tracer 16
Morpholino injection 16
Statistical analysis 17
Result 18
Identification of dorsoventral cell fate marker genes in the mesodermal lineage 18
Inhibition of the BMP signaling activity produced no effect on the expression of dorsoventral cell fate markers in the mesoderm. 20
Forced expression of Hau-Alk3/6Q225D affected the expression of cell fate markers in the mesodermal lineage 21
Overexpression of BMP in mesodermal germinal band produced no effect on the expression of the dorsoventral fate markers 22
BMP signaling pathway activated in the mesoderm of the germinal band 23
Forced expression of Hau-Alk3/6Q225D affected mesodermal bandlet migration during gastrulation 24
Expression of Hau-Alk3/6Q225D produced extraphysiological responses in the mesodermal lineages 25
Blocking the BMP signaling pathway showed no effect on mesodermal migration 27
The actin dynamic was upregulated that lead to the abnormal migration of mesoderm when expressing the Hau-Alk3/6Q225D. 27
Conclusions 30
Discussion 32
Hau-Alk3/6 Q225D ectopically expressed in the mesodermal bandlet leads to abnormal mesoderm migration during gastrulation. 32
BMP signaling pathway is universally activated in the mesoderm during gastrulation through the canonical pathway. 33
Cell autonomous patterning of mesoderm during gastrulation 34
Evolution perspective in BMP signaling to mesoderm in Helobdella 35
References 37
Figures 44
dc.language.isozh-TW
dc.titleBMP訊息在澤蛭原腸胚中胚層發育之功能性實驗分析zh_TW
dc.titleExperimental analysis of BMP signaling in mesoderm development in the gastrula of Helobdellaen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee游智凱,陳俊宏
dc.subject.keywordBMP,Helobdella,原腸化,細胞移動,背腹體軸建立,zh_TW
dc.subject.keywordBMP,Helobdella,gastrulation,cell migration,dorsoventral patterning,en
dc.relation.page68
dc.identifier.doi10.6342/NTU202000462
dc.rights.note有償授權
dc.date.accepted2020-02-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  目前未授權公開取用
3.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved