請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65303完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟 | |
| dc.contributor.author | I-Ting Chuang | en |
| dc.contributor.author | 莊壹婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:35:28Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | 1.Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 2006;31:2151-61.
2.Apfel CC, Cakmakkaya OS, Martin W, et al. Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: a retrospective cohort study. BMC Musculoskelet Disord 2010;11:155. 3.Best BA, Guilak F, Setton LA, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine (Phila Pa 1976) 1994;19:212-21. 4.Boos N, Weissbach S, Rohrbach H, et al. Classification of Age-Related Changes in Lumbar Intervertebral Discs: 2002 Volvo Award in Basic Science. Spine 2002;27:2631-44. 5.Chang Y ed. Assessment of Exogenous Cross-Linking Therapy for Intervertebral Disc Degeneration - An ex vivo Study Using Whole Disc Culture Systemed, 2011. 6.Daniel DM. Non-surgical spinal decompression therapy: does the scientific literature support efficacy claims made in the advertising media? Chiropr Osteopat 2007;15:7. 7.Fritz JM, Thackeray A, Childs JD, et al. A randomized clinical trial of the effectiveness of mechanical traction for sub-groups of patients with low back pain: study methods and rationale. BMC Musculoskelet Disord 2010;11:81. 8.Gantenbein B, Grunhagen T, Lee CR, et al. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine (Phila Pa 1976) 2006;31:2665-73. 9.Gose EE, Naguszewski WK, Naguszewski RK. Vertebral axial decompression therapy for pain associated with herniated or degenerated discs or facet syndrome: an outcome study. Neurol Res 1998;20:186-90. 10.Grunhagen T, Shirazi-Adl A, Fairbank JC, et al. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop Clin North Am 2011;42:465-77, vii. 11.Grunhagen T, Wilde G, Soukane DM, et al. Nutrient supply and intervertebral disc metabolism. J Bone Joint Surg Am 2006;88 Suppl 2:30-5. 12.Harte AA, Baxter GD, Gracey JH. The efficacy of traction for back pain: a systematic review of randomized controlled trials. Arch Phys Med Rehabil 2003;84:1542-53. 13.Haschtmann D, Stoyanov JV, Ettinger L, et al. Establishment of a novel intervertebral disc/endplate culture model: analysis of an ex vivo in vitro whole-organ rabbit culture system. Spine (Phila Pa 1976) 2006;31:2918-25. 14.Haschtmann D, Stoyanov JV, Ferguson SJ. Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 2006;24:1957-66. 15.Huber G, Morlock MM, Ito K. Consistent hydration of intervertebral discs during in vitro testing. Med Eng Phys 2007;29:808-13. 16.Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec 1988;220:337-56. 17.Hussain M, Gay RE, An KN. Reduction in disk and fiber stresses by axial distraction is higher in cervical disk with fibers oriented toward the vertical rather than horizontal plane: a finite element model analysis. J Manipulative Physiol Ther 2010;33:252-60. 18.Iatridis JC, ap Gwynn I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech 2004;37:1165-75. 19.Jackson AR, Travascio F, Gu WY. Effect of mechanical loading on electrical conductivity in human intervertebral disk. J Biomech Eng 2009;131:054505. 20.Jackson AR, Yuan TY, Huang CY, et al. Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine (Phila Pa 1976) 2008;33:1-7. 21.Jim B, Steffen T, Moir J, et al. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J 2011;20:1244-54. 22.Jo Ann C Eurell LEK, Patricia A Gordon, and William H Blakeney. The Scanning Electron Microscopy of Compressed Spinal Units Anatomia Clinica 1983;5:35-40. 23.Krause M, Refshauge KM, Dessen M, et al. Lumbar spine traction: evaluation of effects and recommended application for treatment. Man Ther 2000;5:72-81. 24.Kroeber M, Unglaub F, Guehring T, et al. Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model. Spine (Phila Pa 1976) 2005;30:181-7. 25.Kroeber MW, Unglaub F, Wang H, et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine (Phila Pa 1976) 2002;27:2684-90. 26.Kurutz M, Bender T. Weightbath hydrotraction treatment: application, biomechanics, and clinical effects. J Multidiscip Healthc 2010;3:19-27. 27.Macario A, Pergolizzi JV. Systematic literature review of spinal decompression via motorized traction for chronic discogenic low back pain. Pain Pract. 2006/12/07 ed, 2006:171-8. 28.Maroudas A, Stockwell RA, Nachemson A, et al. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 1975;120:113-30. 29.Perie D, Iatridis JC, Demers CN, et al. Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 2006;39:1392-400. 30.Ramos G, Martin W. Effects of vertebral axial decompression on intradiscal pressure. J Neurosurg 1994;81:350-3. 31.Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, et al. Morphology of the human vertebral endplate. J Orthop Res 2012;30:280-7. 32.Rudert M, Tillmann B. Detection of lymph and blood vessels in the human intervertebral disc by histochemical and immunohistochemical methods. Ann Anat 1993;175:237-42. 33.Shterenshis MV. The history of modern spinal traction with particular reference to neural disorders. Spinal Cord 1997;35:139-46. 34.Simmerman SM, Sizer PS, Dedrick GS, et al. Immediate changes in spinal height and pain after aquatic vertical traction in patients with persistent low back symptoms: a crossover clinical trial. PM R 2011;3:447-57. 35.Soukane DM, Shirazi-Adl A, Urban JP. Analysis of nonlinear coupled diffusion of oxygen and lactic acid in intervertebral discs. J Biomech Eng 2005;127:1121-6. 36.Travascio F, Gu WY. Anisotropic diffusive transport in annulus fibrosus: experimental determination of the diffusion tensor by FRAP technique. Ann Biomed Eng 2007;35:1739-48. 37.Travascio F, Jackson AR, Brown MD, et al. Relationship between solute transport properties and tissue morphology in human annulus fibrosus. J Orthop Res 2009;27:1625-30. 38.Twomey LT. Sustained lumbar traction. An experimental study of long spine segments. Spine (Phila Pa 1976) 1985;10:146-9. 39.Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 2004;29:2700-9. 40.Videman T, Gibbons LE, Battie MC. Age- and pathology-specific measures of disc degeneration. Spine (Phila Pa 1976) 2008;33:2781-8. 41.Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine (Phila Pa 1976) 2008;33:1863-9. 42.Yao H, Justiz MA, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann Biomed Eng 2002;30:1234-41. 43.Zhang Y, Drapeau S, An HS, et al. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine (Phila Pa 1976) 2011;36:1519-27. 44.Zhang Z, Chan Q, Anthony MP, et al. Age-related diffusion patterns in human lumbar intervertebral discs: a pilot study in asymptomatic subjects. Magn Reson Imaging 2011. 45.Zhao Y, Qiu GX, Wang YP, et al. Evaluation of vertical traction radiography for predicting the outcome of moderate to severe rigid scoliosis correction. Orthop Surg 2012;4:35-40. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65303 | - |
| dc.description.abstract | 目的:利用活體椎間盤培養系統探討牽引治療對於退化型椎間盤的養分傳輸之影響。
背景介紹:對於患有退化性椎間盤但尚未需要手術治療的病人而言,牽引治療是復健醫學上使用普遍且安全性高的技術之一。隨著椎間盤老化,其保水能力會被破壞,椎間盤高度會嚴重下降,導致椎間孔狹窄壓迫到神經根,引發下背痛及四肢痛麻等現象。牽引治療可回復縮小的椎間孔,緩解病人痛麻的神經根症狀。牽引治療短期內可疏緩縮小的椎間孔,但就長期而言,是否可有效增加椎間盤內的養分供給以持續保持其厚度則不無疑問。本研究的目的在研究牽引治療對椎間盤內養分傳輸影響,並探討牽引治療是否有利於椎間盤之生長與修復。 材料與方法:使用六個月大、體重約為140公斤的年輕豬隻,在屠宰後4~6小時內取回實驗室進行無菌操作之試樣處理,從上下椎間盤之椎骨中央取下胸椎第四節到第七節的椎間盤單元,將椎骨外的肌肉、韌帶以及後脊突去除,用生理食鹽水清洗後準備後續處理。本實驗將椎間盤分為三組:健康組、嚴重退化組、牽引治療組。健康組為椎間盤沒有受到任何損傷者;嚴重退化組的試樣處理後於第一天在椎間盤內注射0.25%胰蛋白酶0.5ml,並於第二天接受5小時2.0Hz的疲勞負載;牽引治療組的椎間盤則在注射胰蛋白酶和疲勞負載結束後,於第四天起介入連續三天的牽引治療,牽引力量為20kg,時間30分鐘,牽引過程中拉伸30秒、放鬆10秒為一個循環。所有試樣在持續給予正常生理負載的環境下培養一週,一週後探討其椎間盤高度變化量、細胞存活狀態、椎終板厚度、椎間環凸出量與表徵變化。另外為研究牽引治療完內部養分傳輸的即時效應,牽引治療組之椎間盤在最後一次治療結束後即給予螢光染劑循環,並與其他兩組比較一小時內擴散強度之差異。 結果:模擬中、老年人老化程度的嚴重退化性椎間盤與健康組相比,在七天培養後,椎間盤高度變化量增加、椎終板厚度降低、椎間環外突位移量增加,且螢光擴散趨勢大幅下降、椎間核和椎間環內細胞死亡。牽引治療則能恢復上述椎間盤因嚴重退化所造成的破壞,牽引治療組中椎間盤其高度變化量顯著性減少、椎終板厚度增加、椎間環明顯回縮,螢光擴散亮度在各部位均勻地顯著性上升,其中牽引治療在縱向運輸的恢復性較橫向運輸為優,另外促使椎間核和椎間環的活細胞再生,細胞存活比大為提升。 結論:牽引治療能有效回復部分退化時椎終板和椎間環被破壞的結構特性,幫助增加其對液體的滲透度、重建內部養分傳輸系統,讓椎間盤高度維持住且椎間盤細胞獲得養分來源而能自體修復生長,有助於延緩和改善嚴重退化椎間盤內部的惡性環境。 | zh_TW |
| dc.description.abstract | Objective: To investigate the effect of spinal traction on nutrition supply of simulated severe degenerative discs using a whole disc culture system.
Summary of background data: Spinal traction is a well-recognized and safe physical therapy for patients with degenerative disc diseases before surgical remedies. Disc degradation leads to disc height loss and intervertebral foramen narrowing, which compress nerve root and thus induce low back pain and limb numbness. It was proved that traction treatment could expand the intervertebral foreman, so as to reduce radiculopathy in the short-term. Nevertheless, there was lack of knowledge on long-term benefits on nutrition supply for maintaining disc height. Hence, the purpose of this study was to investigate the effects of spinal traction treatment on disc nutrition supply and discover the efficiency of this method on disc regeneration. Methods: Thoracic spinal segments (T4-T7) were harvested from six-month-old pigs with average weight of 140 kg in 4~6 hours after sacrifice. Each disc was dissected out by parallel cutting through the transverse midline of cranial and caudal vertebra. The muscles, ligaments, and posterior process were removed before PBS irrigation. Specimens were assigned to the Intact, Severe-degeneration, and Traction group. All discs were physiologically loaded and incubated in an in-house whole organ culturing system for one week. To mimic severe degeneration discs, discs of Severe-degeneration and Traction group were applied with trypsin solution (0.5ml, 0.25%) injection and 5-hour fatigue loading (Frms: 420N, frequency: 2.0Hz) on the first and second day of the incubation period. Discs of Traction group were then treated with spinal traction (traction force: 20kg, duration: 30mins, one cycle: 30 s traction and 10 s relaxation) once per day from the 4th to 6th day of incubation period. Molecular transportation, disc height, cell viability and histology were observed at the end of incubation period. Molecular transportation was evaluated by fluorescence intensity of fluorescein sodium (FS) within discs, which was circulated in the culture system for 1 hr. One-way ANOVA was conducted to compare all measurements. Statistical difference was considered at p<0.05. Result: Severe degenerated discs were found to be with lower disc height, thinner endplate, anulus bulging, lower FS fluorescence intensity within disc and more dead cells in both nucleus pulposus and anulus fibrosus. In Traction group, it was shown that disc height and endplate thickness increased, AF retracted, fluorescent intensity elevated and cells relived. Conclusion: Spinal traction is capable to recover endplate thickness and excessive AF bulging, which successfully opens the blocked nutrition pathways in severe degenerative discs. Improved nutrition supply not only maintains disc height, but also facilitates disc cell growth and thus decelerates degeneration process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:35:28Z (GMT). No. of bitstreams: 1 ntu-101-R99548048-1.pdf: 2867730 bytes, checksum: d2eac6f56e37550a311aef2a3c3302bc (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口委審定書 i
致謝 ii 中文摘要 iii 英文摘要 v 圖目錄 x 表目錄 xi 第一章 前言 1 1.1 椎間盤的結構特徵 1 1.2 椎間盤的營養代謝 2 1.3 退化性椎間盤 3 1.3.1. 椎間盤退化成因和機制 3 1.3.2. 椎間盤退化分級 4 1.4 牽引治療在退化性椎間盤之運用 5 1.5 研究動機與實驗目的 7 第二章 實驗材料方法 8 2.1 實驗儀器 8 2.1.1. 生物培養系統 8 2.1.2. 牽引治療 10 2.1.3. 螢光攝影系統 12 2.2 實驗階段 14 2.2.1. 試樣準備 14 2.2.2. 實驗流程 15 2.3 實驗分析方法 16 2.3.1. 細胞存活比 16 2.3.2. 螢光傳輸 17 2.3.3. 染色切片 19 2.3.4 掃描式電子顯微鏡 20 2.4 統計分析方法 21 第三章 實驗結果 22 3.1 椎間盤高度變化量 22 3.2 細胞存活比 22 3.3 螢光傳輸比較 24 3.3.1. 螢光分子橫向傳輸趨勢 24 3.3.2. 螢光分子縱向傳輸趨勢 25 3.3.3. 各區域螢光平均亮度 26 3.4 組織結構排列 27 3.4.1. 染色切片 27 3.4.2. 椎間環橫剖面結構 30 第四章 綜合討論 31 4.1 生物培養系統 31 4.2 實驗結果討論 31 4.3 椎間盤養分傳輸之模型 34 4.3 實驗限制 35 第五章 結論與未來展望 36 5.1 結論 36 5.2 未來展望 36 第六章 參考文獻 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 椎間盤退化 | zh_TW |
| dc.subject | 牽引治療 | zh_TW |
| dc.subject | 生物培養系統 | zh_TW |
| dc.subject | 養分循環 | zh_TW |
| dc.subject | spinal traction | en |
| dc.subject | disc degeneration disease | en |
| dc.subject | whole disc culture system | en |
| dc.subject | nutrition supply | en |
| dc.title | 脊椎牽引對於嚴重退化椎間盤之養分傳輸影響 | zh_TW |
| dc.title | Effects of Spinal Traction in Nutrition Supply for
Severe Degenerative Disc | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晉,趙本秀,孫瑞昇 | |
| dc.subject.keyword | 牽引治療,椎間盤退化,生物培養系統,養分循環, | zh_TW |
| dc.subject.keyword | spinal traction,disc degeneration disease,whole disc culture system,nutrition supply, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
