Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳培哲
dc.contributor.authorWei-Tien Taien
dc.contributor.author戴瑋恬zh_TW
dc.date.accessioned2021-06-16T23:35:12Z-
dc.date.available2017-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citationReferences:
1. Kao JH, Chen DS. Changing disease burden of hepatocellular carcinoma in the Far East and Southeast Asia. Liver Int 2005;25:696-703.
2. Chen PJ, Chen CR, Sung JL, Chen DS. Identification of a doubly spliced viral transcript joining the separated domains for putative protease and reverse transcriptase of hepatitis B virus. J Virol 1989;63:4165-71.
3. Lai MY, Chen DS, Chen PJ, et al. Status of hepatitis B virus DNA in hepatocellular carcinoma: a study based on paired tumor and nontumor liver tissues. J Med Virol 1988;25:249-58.
4. Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 2000;118:554-9.
5. Yu MW, Chang HC, Liaw YF, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. J Natl Cancer Inst 2000;92:1159-64.
6. Tagger A, Donato F, Ribero ML, et al. Case-control study on hepatitis C virus (HCV) as a risk factor for hepatocellular carcinoma: the role of HCV genotypes and the synergism with hepatitis B virus and alcohol. Brescia HCC Study. Int J Cancer 1999;81:695-9.
7. Liu CJ, Chen PJ, Shau WY, et al. Clinical aspects and outcomes of volunteer blood donors testing positive for hepatitis-C virus infection in Taiwan: a prospective study. Liver Int 2003;23:148-55.
8. Chen JD, Liu CJ, Lee PH, et al. Hepatitis B genotypes correlate with tumor recurrence after curative resection of hepatocellular carcinoma. Clin Gastroenterol Hepatol 2004;2:64-71.
9. Lin CL, Chen JD, Liu CJ, et al. Clinicopathological differences between hepatitis B viral genotype B- and C-related resectable hepatocellular carcinoma. J Viral Hepat 2007;14:64-9.
10. Tan A, Yeh SH, Liu CJ, Cheung C, Chen PJ. Viral hepatocarcinogenesis: from infection to cancer. Liver Int 2008;28:175-88.
11. Chen HL, Chiu TS, Chen PJ, Chen DS. Cytogenetic studies on human liver cancer cell lines. Cancer Genet Cytogenet 1993;65:161-6.
12. Lin HH, Hsu HY, Chang MH, Chen PJ, Chen DS. Hepatitis B virus in the colostra of HBeAg-positive carrier mothers. J Pediatr Gastroenterol Nutr 1993;17:207-10.
13. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97:265-72.
14. Yeh SH, Chang CF, Shau WY, et al. Dominance of functional androgen receptor allele with longer CAG repeat in hepatitis B virus-related female hepatocarcinogenesis. Cancer Res 2002;62:4346-51.
15. Yeh SH, Chiu CM, Chen CL, et al. Somatic mutations at the trinucleotide repeats of androgen receptor gene in male hepatocellular carcinoma. Int J Cancer 2007;120:1610-7.
16. Wang SH, Yeh SH, Lin WH, et al. Identification of androgen response elements in the enhancer I of hepatitis B virus: a mechanism for sex disparity in chronic hepatitis B. Hepatology 2009;50:1392-402.
17. Yang WJ, Chang CJ, Yeh SH, et al. Hepatitis B virus X protein enhances the transcriptional activity of the androgen receptor through c-Src and glycogen synthase kinase-3beta kinase pathways. Hepatology 2009;49:1515-24.
18. Hwang YH, Choi JY, Kim S, et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 2004;29:113-21.
19. Yoshida T, Hisamoto T, Akiba J, et al. Spreds, inhibitors of the Ras/ERK signal transduction, are dysregulated in human hepatocellular carcinoma and linked to the malignant phenotype of tumors. Oncogene 2006;25:6056-66.
20. Schmitz KJ, Wohlschlaeger J, Lang H, et al. Activation of the ERK and AKT signalling pathway predicts poor prognosis in hepatocellular carcinoma and ERK activation in cancer tissue is associated with hepatitis C virus infection. J Hepatol 2008;48:83-90.
21. Stockl L, Berting A, Malkowski B, et al. Integrity of c-Raf-1/MEK signal transduction cascade is essential for hepatitis B virus gene expression. Oncogene 2003;22:2604-10.
22. Dominici FP, Argentino DP, Munoz MC, et al. Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Horm IGF Res 2005;15:324-36.
23. Tortorella C, Simone O, Piazzolla G, et al. Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay fas-induced neutrophil apoptosis in elderly humans. J Gerontol A Biol Sci Med Sci 2006;61:1111-8.
24. Hu TH, Huang CC, Lin PR, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 2003;97:1929-40.
25. Feitelson MA, Pan J, Lian Z. Early molecular and genetic determinants of primary liver malignancy. Surg Clin North Am 2004;84:339-54.
26. Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007;45:42-52.
27. Rozga J. Hepatocyte proliferation in health and in liver failure. Med Sci Monit 2002;8:RA32-8.
28. Tavian D, De Petro G, Benetti A, et al. u-PA and c-MET mRNA expression is co-ordinately enhanced while hepatocyte growth factor mRNA is down-regulated in human hepatocellular carcinoma. Int J Cancer 2000;87:644-9.
29. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, et al. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006;116:1582-95.
30. To KF, Chan MW, Leung WK, et al. Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. Br J Cancer 2004;91:1335-41.
31. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E. Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood 2000;95:3765-70.
32. Gu F, Dube N, Kim JW, et al. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol 2003;23:3753-62.
33. Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007;22:1251-67.
34. You M, Yu DH, Feng GS. Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol 1999;19:2416-24.
35. Tenev T, Bohmer SA, Kaufmann R, et al. Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells. Eur J Cell Biol 2000;79:261-71.
36. Ernst M, Inglese M, Waring P, et al. Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J Exp Med 2001;194:189-203.
37. Tanuma N, Shima H, Nakamura K, Kikuchi K. Protein tyrosine phosphatase epsilonC selectively inhibits interleukin-6- and interleukin- 10-induced JAK-STAT signaling. Blood 2001;98:3030-4.
38. Wu C, Guan Q, Wang Y, Zhao ZJ, Zhou GW. SHP-1 suppresses cancer cell growth by promoting degradation of JAK kinases. J Cell Biochem 2003;90:1026-37.
39. Yamada S, Shiono S, Joo A, Yoshimura A. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett 2003;534:190-6.
40. Zhao R, Fu X, Teng L, Li Q, Zhao ZJ. Blocking the function of tyrosine phosphatase SHP-2 by targeting its Src homology 2 domains. J Biol Chem 2003;278:42893-8.
41. Han X, Sosnowska D, Bonkowski EL, Denson LA. Growth hormone inhibits signal transducer and activator of transcription 3 activation and reduces disease activity in murine colitis. Gastroenterology 2005;129:185-203.
42. Yoshikawa H, Matsubara K, Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet 2001;28:29-35.
43. Chung CD, Liao J, Liu B, et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997;278:1803-5.
44. Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 2006;71:713-21.
45. Saydmohammed M, Joseph D, Syed V. Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem 2010;110:447-56.
46. Ruff SJ, Chen K, Cohen S. Peroxovanadate induces tyrosine phosphorylation of multiple signaling proteins in mouse liver and kidney. J Biol Chem 1997;272:1263-7.
47. Symes A, Stahl N, Reeves SA, et al. The protein tyrosine phosphatase SHP-2 negatively regulates ciliary neurotrophic factor induction of gene expression. Curr Biol 1997;7:697-700.
48. Kortylewski M, Heinrich PC, Mackiewicz A, et al. Interleukin-6 and oncostatin M-induced growth inhibition of human A375 melanoma cells is STAT-dependent and involves upregulation of the cyclin-dependent kinase inhibitor p27/Kip1. Oncogene 1999;18:3742-53.
49. Stefanova I, Hemmer B, Vergelli M, et al. TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 2003;4:248-54.
50. Barr AJ, Ugochukwu E, Lee WH, et al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 2009;136:352-63.
51. Ren L, Chen X, Luechapanichkul R, et al. Substrate specificity of protein tyrosine phosphatases 1B, RPTPalpha, SHP-1, and SHP-2. Biochemistry 2011;50:2339-56.
52. Hackett RH, Wang YD, Sweitzer S, et al. Mapping of a cytoplasmic domain of the human growth hormone receptor that regulates rates of inactivation of Jak2 and Stat proteins. J Biol Chem 1997;272:11128-32.
53. Yang J, Liang X, Niu T, et al. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. J Biol Chem 1998;273:28199-207.
54. Barford D, Neel BG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 1998;6:249-54.
55. Yin T, Shen R, Feng GS, Yang YC. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J Biol Chem 1997;272:1032-7.
56. Hof P, Pluskey S, Dhe-Paganon S, Eck MJ, Shoelson SE. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998;92:441-50.
57. Yang J, Liu L, He D, et al. Crystal structure of human protein-tyrosine phosphatase SHP-1. J Biol Chem 2003;278:6516-20.
58. Bocchinfuso G, Stella L, Martinelli S, et al. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Proteins 2007;66:963-74.
59. Weibrecht I, Bohmer SA, Dagnell M, et al. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med 2007;43:100-10.
60. Wang W, Liu L, Song X, et al. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J Cell Biochem 2011;112:2062-71.
61. Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem 1999;274:28301-7.
62. Verslype C, Van Cutsem E, Dicato M, et al. The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 10th World Congress on Gastrointestinal Cancer, Barcelona, 2008. Ann Oncol 2009;20 Suppl 7:vii1-vii6.
63. Palmer DH. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:2498; author reply -9.
64. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009;10:25-34.
65. Di Maio M, Daniele B, Perrone F. Targeted therapies: Role of sorafenib in HCC patients with compromised liver function. Nat Rev Clin Oncol 2009;6:505-6.
66. Johnson P, Billingham L. Sorafenib for liver cancer: the horizon broadens. Lancet Oncol 2009;10:4-5.
67. Adnane L, Trail PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol 2006;407:597-612.
68. Liu L, Cao Y, Chen C, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 2006;66:11851-8.
69. Messmer D, Fecteau JF, O'Hayre M, et al. Chronic lymphocytic leukemia cells receive RAF-dependent survival signals in response to CXCL12 that are sensitive to inhibition by sorafenib. Blood 2011;117:882-9.
70. Auclair D, Miller D, Yatsula V, et al. Antitumor activity of sorafenib in FLT3-driven leukemic cells. Leukemia 2007;21:439-45.
71. Wilhelm S, Carter C, Lynch M, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006;5:835-44.
72. Takeda K, Stagg J, Yagita H, Okumura K, Smyth MJ. Targeting death-inducing receptors in cancer therapy. Oncogene 2007;26:3745-57.
73. Wang S. The promise of cancer therapeutics targeting the TNF-related apoptosis-inducing ligand and TRAIL receptor pathway. Oncogene 2008;27:6207-15.
74. Falschlehner C, Ganten TM, Koschny R, Schaefer U, Walczak H. TRAIL and Other TRAIL Receptor Agonists as Novel Cancer Therapeutics. Adv Exp Med Biol 2009;647:195-206.
75. Natoni A, MacFarlane M, Inoue S, et al. TRAIL signals to apoptosis in chronic lymphocytic leukaemia cells primarily through TRAIL-R1 whereas cross-linked agonistic TRAIL-R2 antibodies facilitate signalling via TRAIL-R2. Br J Haematol 2007;139:568-77.
76. Taniai M, Grambihler A, Higuchi H, et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 2004;64:3517-24.
77. Meng XW, Lee SH, Dai H, et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem 2007;282:29831-46.
78. Ricci MS, Kim SH, Ogi K, et al. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 2007;12:66-80.
79. Hall MA, Cleveland JL. Clearing the TRAIL for Cancer Therapy. Cancer Cell 2007;12:4-6.
80. Chen KF, Yeh PY, Yeh KH, et al. Down-regulation of phospho-Akt is a major molecular determinant of bortezomib-induced apoptosis in hepatocellular carcinoma cells. Cancer Res 2008;68:6698-707.
81. Rosato RR, Almenara JA, Coe S, Grant S. The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 2007;67:9490-500.
82. Kim SH, Ricci MS, El-Deiry WS. Mcl-1: a gateway to TRAIL sensitization. Cancer Res 2008;68:2062-4.
83. Jiang H, Harris MB, Rothman P. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 2000;105:1063-70.
84. Starr R, Willson TA, Viney EM, et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997;387:917-21.
85. Hansen JA, Lindberg K, Hilton DJ, Nielsen JH, Billestrup N. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol Endocrinol 1999;13:1832-43.
86. Pezet A, Favre H, Kelly PA, Edery M. Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem 1999;274:24497-502.
87. Park ES, Kim H, Suh JM, et al. Involvement of JAK/STAT (Janus kinase/signal transducer and activator of transcription) in the thyrotropin signaling pathway. Mol Endocrinol 2000;14:662-70.
88. Limnander A, Rothman PB. Abl oncogene bypasses normal regulation of Jak/STAT activation. Cell Cycle 2004;3:1486-8.
89. Miyoshi H, Fujie H, Moriya K, et al. Methylation status of suppressor of cytokine signaling-1 gene in hepatocellular carcinoma. J Gastroenterol 2004;39:563-9.
90. Machida K, Tsukamoto H, Liu JC, et al. c-Jun mediates hepatitis C virus hepatocarcinogenesis through signal transducer and activator of transcription 3 and nitric oxide-dependent impairment of oxidative DNA repair. Hepatology 2010;52:480-92.
91. Peroukides S, Bravou V, Alexopoulos A, et al. Survivin overexpression in HCC and liver cirrhosis differentially correlates with p-STAT3 and E-cadherin. Histol Histopathol 2010;25:299-307.
92. Yang F, Van Meter TE, Buettner R, et al. Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 2008;7:3519-26.
93. Blechacz BR, Smoot RL, Bronk SF, et al. Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 2009;50:1861-70.
94. Kusaba M, Nakao K, Goto T, et al. Abrogation of constitutive STAT3 activity sensitizes human hepatoma cells to TRAIL-mediated apoptosis. J Hepatol 2007;47:546-55.
95. Sahu RP, Srivastava SK. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst 2009;101:176-93.
96. Pandey MK, Sung B, Ahn KS, Aggarwal BB. Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol Pharmacol 2009;75:525-33.
97. Kunnumakkara AB, Nair AS, Sung B, Pandey MK, Aggarwal BB. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res 2009;7:118-28.
98. Minoo P, Zadeh MM, Rottapel R, Lebrun JJ, Ali S. A novel SHP-1/Grb2-dependent mechanism of negative regulation of cytokine-receptor signaling: contribution of SHP-1 C-terminal tyrosines in cytokine signaling. Blood 2004;103:1398-407.
99. Johan MF, Bowen DT, Frew ME, Goodeve AC, Reilly JT. Aberrant methylation of the negative regulators RASSFIA, SHP-1 and SOCS-1 in myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 2005;129:60-5.
100. Xu SB, Liu XH, Li BH, et al. DNA methylation regulates constitutive expression of Stat6 regulatory genes SOCS-1 and SHP-1 in colon cancer cells. J Cancer Res Clin Oncol 2009;135:1791-8.
101. Yuan Q, Li PD, Li BH, et al. Differential IL-4/Stat6 activities correlate with differential expression of regulatory genes SOCS-1, SHP-1, and PP2A in colon cancer cells. J Cancer Res Clin Oncol 2009;135:131-40.
102. Waiboci LW, Ahmed CM, Mujtaba MG, et al. Both the suppressor of cytokine signaling 1 (SOCS-1) kinase inhibitory region and SOCS-1 mimetic bind to JAK2 autophosphorylation site: implications for the development of a SOCS-1 antagonist. J Immunol 2007;178:5058-68.
103. Rottapel R, Ilangumaran S, Neale C, et al. The tumor suppressor activity of SOCS-1. Oncogene 2002;21:4351-62.
104. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 2011;378:1931-9.
105. Matei D, Sill MW, Lankes HA, et al. Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. J Clin Oncol 2011;29:69-75.
106. Huber S, Oelsner M, Decker T, et al. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 2011.
107. Martinelli E, Troiani T, Morgillo F, et al. Synergistic antitumor activity of sorafenib in combination with epidermal growth factor receptor inhibitors in colorectal and lung cancer cells. Clin Cancer Res 2010;16:4990-5001.
108. Lam ET, Ringel MD, Kloos RT, et al. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 2010;28:2323-30.
109. Chen KF, Tai WT, Liu TH, et al. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res 2010;16:5189-99.
110. Badache A, Hynes NE. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells. Cancer Res 2001;61:383-91.
111. Jiao J, Kaur N, Lu B, Reeves SA, Halvorsen SW. Initiation and maintenance of CNTF-Jak/STAT signaling in neurons is blocked by protein tyrosine phosphatase inhibitors. Brain Res Mol Brain Res 2003;116:135-46.
112. Kita A, Uotani S, Kuwahara H, et al. Vanadate enhances leptin-induced activation of JAK/STAT pathway in CHO cells. Biochem Biophys Res Commun 2003;302:805-9.
113. Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004;10:48-54.
114. Germain D, Frank DA. Targeting the cytoplasmic and nuclear functions of signal transducers and activators of transcription 3 for cancer therapy. Clin Cancer Res 2007;13:5665-9.
115. Singh A, Jayaraman A, Hahn J. Modeling regulatory mechanisms in IL-6 signal transduction in hepatocytes. Biotechnol Bioeng 2006;95:850-62.
116. Kim H, Baumann H. Dual signaling role of the protein tyrosine phosphatase SHP-2 in regulating expression of acute-phase plasma proteins by interleukin-6 cytokine receptors in hepatic cells. Mol Cell Biol 1999;19:5326-38.
117. Ram PA, Waxman DJ. Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J Biol Chem 1997;272:17694-702.
118. Chen KF, Yeh PY, Hsu C, et al. Bortezomib overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells in part through the inhibition of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2009;284:11121-33.
119. Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006;130:1117-28.
120. Park SJ, Kim HY, Kim H, et al. Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free Radic Biol Med 2009;46:1694-702.
121. Kannappan R, Yadav VR, Aggarwal BB. {gamma}-Tocotrienol but not {gamma}-tocopherol blocks STAT3 cell signaling pathway through induction of protein tyrosine phosphatase SHP-1 and sensitizes tumor cells to chemotherapeutic agents. J Biol Chem 2010.
122. Gamero AM, Young HA, Wiltrout RH. Inactivation of Stat3 in tumor cells: releasing a brake on immune responses against cancer? Cancer Cell 2004;5:111-2.
123. Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs 2005;16:601-7.
124. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007;7:41-51.
125. Yue P, Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 2009;18:45-56.
126. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009;9:798-809.
127. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 2010;21:11-9.
128. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 2011;21:159-68.
129. Zhao M, Jiang B, Gao FH. Small molecule inhibitors of STAT3 for cancer therapy. Curr Med Chem 2011;18:4012-8.
130. Kortylewski M, Yu H. Stat3 as a potential target for cancer immunotherapy. J Immunother 2007;30:131-9.
131. Inghirami G, Chiarle R, Simmons WJ, et al. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 2005;4:1131-3.
132. Gao L, Li F, Dong B, et al. Inhibition of STAT3 and ErbB2 suppresses tumor growth, enhances radiosensitivity, and induces mitochondria-dependent apoptosis in glioma cells. Int J Radiat Oncol Biol Phys 2010;77:1223-31.
133. Hussain SF, Kong LY, Jordan J, et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 2007;67:9630-6.
134. Kim HY, Park EJ, Joe EH, Jou I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol 2003;171:6072-9.
135. Pensa S, Watson CJ, Poli V. Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia 2009;14:121-9.
136. Lin L, Deangelis S, Foust E, et al. A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 2010;9:217.
137. Renhowe PA, Pecchi S, Shafer CM, et al. Design, structure-activity relationships and in vivo characterization of 4-amino-3-benzimidazol-2-ylhydroquinolin-2-ones: a novel class of receptor tyrosine kinase inhibitors. J Med Chem 2009;52:278-92.
138. Dey JH, Bianchi F, Voshol J, et al. Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 2010;70:4151-62.
139. Chase A, Grand FH, Cross NC. Activity of TKI258 against primary cells and cell lines with FGFR1 fusion genes associated with the 8p11 myeloproliferative syndrome. Blood 2007;110:3729-34.
140. Sarker D, Molife R, Evans TR, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res 2008;14:2075-81.
141. Tai WT, Cheng AL, Shiau CW, et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 2011.
142. Lesina M, Kurkowski MU, Ludes K, et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011;19:456-69.
143. Zhang Z, Shen K, Lu W, Cole PA. The role of C-terminal tyrosine phosphorylation in the regulation of SHP-1 explored via expressed protein ligation. J Biol Chem 2003;278:4668-74.
144. Lopez-Ruiz P, Rodriguez-Ubreva J, Cariaga AE, Cortes MA, Colas B. SHP-1 in Cell-Cycle Regulation. Anticancer Agents Med Chem 2011;11:89-98.
145. Wu C, Sun M, Liu L, Zhou GW. The function of the protein tyrosine phosphatase SHP-1 in cancer. Gene 2003;306:1-12.
146. Chen KF, Yu HC, Liu CY, et al. Bortezomib sensitizes HCC cells to CS-1008, an anti-human death receptor 5 antibody, through the inhibition of CIP2A. Mol Cancer Ther 2011.
147. Chen KF, Yu HC, Liu TH, et al. Synergistic interactions between sorafenib and bortezomib in hepatocellular carcinoma involve PP2A-dependent Akt inactivation. J Hepatol 2010;52:88-95.
148. Xiao W, Ando T, Wang HY, Kawakami Y, Kawakami T. Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 2010;116:6003-13.
149. Lee SH, Lopes de Menezes D, Vora J, et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res 2005;11:3633-41.
150. Schneller D, Machat G, Sousek A, et al. p19(ARF) /p14(ARF) controls
oncogenic functions of Stat3 in hepatocellular carcinoma. Hepatology 2011.
151. Guryanova OA, Wu Q, Cheng L, et al. Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell 2011;19:498-511.
152. Leon F, Cespon C, Franco A, et al. SHP-1 expression in peripheral T cells from patients with Sezary syndrome and in the T cell line HUT-78: implications in JAK3-mediated signaling. Leukemia 2002;16:1470-7.
153. Yip SS, Crew AJ, Gee JM, et al. Up-regulation of the protein tyrosine
phosphatase SHP-1 in human breast cancer and correlation with GRB2 expression. Int J Cancer 2000;88:363-8.
154. Wang W, Liu L, Song X, et al. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J Cell Biochem 2011.
155. Qin C, Wavreille AS, Pei D. Alternative mode of binding to phosphotyrosyl peptides by Src homology-2 domains. Biochemistry 2005;44:12196-202.
156. Sweeney MC, Wavreille AS, Park J, et al. Decoding protein-protein interactions through combinatorial chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2 domains. Biochemistry 2005;44:14932-47.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65298-
dc.description.abstract中文摘要
肝癌盛行於全世界,並且為臺灣發生率及死亡率最高的腫瘤之一。早期肝癌的治療以外科切除為主,但是大約只有百分之20至30的病患能夠以手術治療,對於晚期肝癌或手術後復發及發生轉移的病患,化學治療為主要的療法。不過,長久以來的化療成果並不顯著。近年來,分子標靶藥物已為癌症治療注入一股新的希望。於2007年,Sorafenib成功成為第一個由美國FDA核准上市的小分子標靶治療藥物。Sorafenib作用於多種分子激酶的功能抑制,以有效控制腫瘤細胞增生。在我們最近的研究顯示,有效的併用 Sorafenib 及其他訊息傳遞抑制藥物可達到增敏作用,以強化抗癌效果。我們發現 Sorafenib 可以有效克服肝癌細胞對於 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)的抗性並顯著地造成細胞凋亡的現象(Chapter 1).。在這項研究中,我們發現 Sorafenib 透過增加SHP-1去磷酸激酶的活性來降低 STAT3 於細胞訊息傳遞路徑中的活化。STAT3 是一個重要的轉錄因子,其下游訊息可活化一系列負責細胞增生及存活的分子。我們已證實有效的抑制 STAT3 活化,可以造成顯著的抗癌效應。我們更進一步討論 Sorafenib 對於 STAT3之去活化反應,是否和它的激酶抑制作用有關。我們設計了一系列小分子 Sorafenib 衍生物,但不具有其原始的激酶抑制作用。在一連串的分子及細胞實驗驗證下,我們發現 Sorafenib 對於 STAT3 的去活化現象和其激酶抑制作用無關。藉由此一系列衍生物最具代表性的小分子 SC-1,我們可以發現相似的癌細胞生長抑制作用。在小鼠肝癌模式中,我們更發現衍生物 SC-1 有優於 Sorafenib 的表現。此一研究為Sorafenib 的應用帶來嶄新的契機(Chapter 2)。除此之外,我們發現另一多激酶抑制標靶藥物,Dovitinib,亦有此一影響SHP-1/STAT3相關訊息傳島之功能,並可造成原先對於Sorafenib具抗藥性之細胞死亡(Chapter 3)。為延續 Sorafenib 相關研究,我們針對Sorafenib如何增加SHP-1活性做更近一步的探討(Chapter 4)。SHP-1的自體抑制(autoinhibition)為一重要決定其催化活性的原因之ㄧ。我們發現Sorafenib不只可直接作用於SHP-1調控其活性以外,並可影響N端SH2 domain與C催化端之聯結,藉以呈現開啟之型態以增加去磷酸激酶活性。去除N-SH2 domain及單一變異D61A的SHP-1,無法呈現Sorafenib原有對於肝癌細胞之分子特性。同時,我們也在臨床肝癌病人檢體中發現,低表現SHP-1及高強度p-STAT3之關連性Sorafenib調控 SHP-1 之去磷酸根活性來達到有效的 STAT3 抑制作用的研究中,對於下一階段的設計及合成 STAT3抑制劑(亦為SHP-1 活性增強劑)將因具有足夠之分子依據而更具體。由衷希望,在不久的將來,我們的研究工作可以提供更精進的治療選擇,並造福更多肝癌患者。
zh_TW
dc.description.abstractAbstract

Human hepatocellular carcinoma (HCC) is the fifth most prevalent solid tumor in the world and the fourth main inducer of cancer-related death. Surgical resection, the only curative treatment for HCC, is feasible in only 20-30% of the patients at diagnosis. Unfortunately, systemic chemotherapy or liver transplantation is limited for patients with HCC. In 2007, sorafenib (NexavarR), a multiple kinase inhibitor, has shown survival benefits in patients with advanced HCC and become the first clinically approved drug for HCC. First, we have showed that sorafenib sensitizes HCC cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through the inhibition of signal transducer and activator of transcription 3 (STAT3) (Chapter 1). In this study, we found that sorafenib inhibits STAT3 through up-regulating the activity of Src homology-2 containing protein tyrosine phosphatase-1 (SHP-1), a protein tyrosine phosphatase and a key inhibitory regulator of STAT3, in HCC cells. To examine whether sorafenib’s effect on STAT3 is related to its kinase inhibitory activity, we further generated a series of sorafenib derivatives which lack activities on kinases. Interestingly, we have observed SC-1, a sorafenib derivative which is close to sorafenib structurally but no kinase activity, showed even better in vivo activity than sorafenib in HCC tumors. These results suggest that SHP-1-dependent STAT3 inhibition is a major kinase-independent target of sorafenib (Chapter 2). In addition to sorafenib, we also found that dovitinib, another multiple kinase inhibitor, shows the anti-HCC effect via a SHP-1/STAT-dependent signaling pathway and overcomes the resistance of sorafenib (Chapter 3). Finally, to elucidate the molecular mechanism by which sorafenib increases SHP-1 phosphatase activity, we demonstrated the conformation-based changes in SHP-1 to promote catalytic activity after sorafenib treatment (Chapter 4). Sorafenib increases SHP-1 activity in vitro and in vivo, indicating that sorafenib affects phosphatase activity directly. Based on a series of deletion mutants of SHP-1, we observed that N-terminal SH2 domains (N1) strongly involved in sorafenib-induced STAT3 inhibition and apoptotic effect. Moreover, D61, a critical residue in N1 responsible to form inhibitory salt bridge with catalytic domain, also abrogates the biological effect of sorafenib. In co-IP experiments, sorafenib impairs the interaction between N1 and PTP directly. Furthermore, the role of elevated SHP-1 served as tumor suppressor of HCC was confirmed in cells expressed constitutively activate mutant (dN1 and D61A). Together, we propose a conformational change model for sorafenib-induced SHP-1 activity. Sorafenib potentially opened the inhibited structure of SHP-1 through impairing the linkage between N-SH2 and PTP domains to increase phosphatase activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:35:12Z (GMT). No. of bitstreams: 1
ntu-101-D96448008-1.pdf: 7734457 bytes, checksum: de3fef954a9321e6933a2803b8665ac5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsTABLE CONTENTS -------------------------------------------------------------------------2
Abstract------------------------------------------------------------------------------------------6
中文摘要-----------------------------------------------------------------------------------------7
Literature Review------------------------------------------------------------------------------8
Hepatocellular carcinoma (HCC)--------------------------------------------------------8
1. HBV and Hepatocarcinogenesis--------------------------------------------------------8
2. The critical signaling pathway in hepatocarcinogenesis--------------------------10
2.1 RAF/MEK/ERK pathway------------------------------------------------------------10
2.2 PI3K/AKT/mTOR pathway----------------------------------------------------------10
2.3 HGF/c-MET pathway----------------------------------------------------------------11
2.4 JAK/STAT-related signaling pathway--------------------------------------------11
2.4.1 The negative regulator of STAT signaling pathway:
Protein Tyrosine Phosphatase (PTP)---------------------------------------12
Chapter Ⅰ-------------------------------------------------------------------------------------14
Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of signal transducers and activators of transcription 3
Abstract-----------------------------------------------------------------------------------------14
Introduction------------------------------------------------------------------------------------15
Translational Relevance----------------------------------------------------------------------17
Materials and Methods-----------------------------------------------------------------------17
Results-------------------------------------------------------------------------------------------21
Sorafenib enhances TRAIL-induced apoptosis in resistant HCC cells-----------------21
Down-regulation of STAT3 is associated with sensitizing effects of sorafenib in HCC
-------------------------------------------------------------------------------------------------22
Effects of sorafenib on TRAIL receptors are not essential for its mediating effects on TRAIL-induced apoptosis ---------------------------------------------------------------------23
Validation of STAT3-----------------------------------------------------------------------------24
Inhibition of SHP-1 reverses effects of sorafenib on pSTAT3 and TRAIL-induced apoptosis------------------------------------------------------------------------------------------24
Effect of sorafenib and LBY135 on PLC5 xenograft tumor growth in vivo-----------26
Discussion---------------------------------------------------------------------------------------28
Chapter Ⅱ-------------------------------------------------------------------------------------31
Signal transducers and activators of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma.
Abstract-----------------------------------------------------------------------------------------31
Introduction------------------------------------------------------------------------------------32
Significances----------------------------------------------------------------------------------- 34
Materials and Methods-----------------------------------------------------------------------34
Results-------------------------------------------------------------------------------------------37
SC-1, a sorafenib derivative, lacking the inhibitory function of Raf-1, showed
similar cell death effect to sorafenib in HCC cell lines-------------------------------37
STAT3 is vital to the sensitizing effect of sorafenib and SC-1 in HCC cell lines-38
SHP-1 phosphatase plays a role in the effect of sorafenib and SC-1 on
phospho-STAT3 and apoptosis------------------------------------------------------------39
SC-1 down-regulates p-STAT3 and induces apoptosis in HUVEC cells-----------40
Therapeutic evaluation of the effect of SC-1 and sorafenib on Huh7-bearing mice--------------------------------------------------------------------------------------------41
Discussion---------------------------------------------------------------------------------------43
Chapter Ⅲ-------------------------------------------------------------------------------------45
Dovitinib, a multiple kinase inhibitor, induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through inhibition of signal transducer and activator of transcription 3
Abstract-----------------------------------------------------------------------------------------45
Introduction------------------------------------------------------------------------------------46
Materials and Methods-----------------------------------------------------------------------49
Results-------------------------------------------------------------------------------------------52
Multiple kinase inhibitor dovitinib shows anti-tumor effects in HCC cells-------52
Downregulation of p-STAT3 contributes the apoptotic effect of dovitinib in HCC
------------------------------------------------------------------------------------------------- 52
SHP-1 plays a critical role in dovitinib-induced apoptosis and inhibition of p-STAT3-------------------------------------------------------------------------------------- 54
Dovitinib increases the phosphatase activity of SHP-1-------------------------------54
Dovitinib is effective in sorafenib-resistant cells---------------------------------------55
Effects of dovitinib in Huh-7 and PLC5 xenograft nude mice----------------------57
Discussion---------------------------------------------------------------------------------------58
Chapter Ⅳ-------------------------------------------------------------------------------------62
Sorafenib downregulates p-STAT3-related signaling pathway via a direct impact on
N-terminal inhibitory SH2 domain of SHP-1
Abstract-----------------------------------------------------------------------------------------62
Introduction------------------------------------------------------------------------------------63
Results-------------------------------------------------------------------------------------------65
Sorafenib directly increases SHP-1 phosphatase activity in vitro and in vivo----65
Sorafenib releases the autoinhibition of SHP-1 by interfering with inhibitory
N-SH2 domain-------------------------------------------------------------------------------66
Sorafenib directly impairs the interaction between N1 and catalytic PTP domain
------------------------------------------------------------------------------------------------- 70 Discussions and Summary-------------------------------------------------------------------73

Figures-------------------------------------------------------------------------------------------75
Fig. 1 Sorafenib enhances TRAIL-induced apoptosis in resistant HCC cells-----75
Fig. 2 Sorafenib enhances TRAIL-induced cell death in resistant HCC cells via a
caspases-dependent apoptosis-------------------------------------------------------76
Fig. 3. Downregulation of pSTAT3 is associated with sensitizing effects of
sorafenib in HCC cells----------------------------------------------------------------77
Fig. 4. P-STAT3 is a vital factor for TRAIL’s sensitizing effects of sorafenib-----78
Fig. 5. No significant effects of sorafenib on TRAIL receptors---------------------- 79
Fig. 6. Validation of STAT3------------------------------------------------------------------80
Fig. 7. Inhibition of PTP reverses the effects of sorafenib on p-STAT3 and
apoptosis------------------------------------------------------------------------------- 81
Fig. 8. Inhibition of SHP-1 reverses the effects of sorafenib on p-STAT3 and
apoptosis------------------------------------------------------------------------------- 82
Fig. 9. In vivo effect of sorafenib and LBY135 on PLC5 xenograft nude mice---83
Fig. 10 SC-1, a sorafenib derivative, loses the inhibitory effect for kinase--------84
Fig. 11 SC-1, a sorafenib derivative, shows anti-cancer effects similar to sorafenib in HCC cells-------------------------------------------------------------- 85
Fig. 12. SC-1 down-regulates phospho-STAT3 in HCC-------------------------------86
Fig. 13. Inhibition of SHP-1 reverses effects of sorafenib and SC-1 on p-STAT3 and apoptosis------------------------------------------------------------------------- 87
Fig. 14. Raf-1 is not associated with SC-1-induced inhibition of p-STAT3;
meanwhile SC-1 also shows a p-STAT3-dependent apoptotic effect in HUVEC cells------------------------------------------------------------------------ 88
Fig. 15. SHP-1 has a crucial role in sorafenib/SC-1-induced molecular event in HCC cell lines----------------------------------------------------------------------- 89
Fig. 16. In vivo effect of sorafenib and SC-1 on Huh-7 xeonograft nude mice----90
Fig. 17. Multiple kinase inhibitor dovitinib shows antitumor effects in HCC cell lines------------------------------------------------------------------------------------91
Fig. 18. Downregulation of p-STAT3 contributes to the apoptotic effect of dovitinib on HCC-------------------------------------------------------------------92
Fig. 19. Overexpression of STAT3 restores the apoptotic effect in dovitinib-treated HCC cells-------------------------------------------------------93
Fig. 20. Inhibition of SHP-1 reversed effect of dovitinib on p-STAT3 and apoptosis------------------------------------------------------------------------------94
Fig. 21. Dovitinib increases phosphatase activity of SHP-1-------------------------- 96
Fig. 22. Dovitinib did not affect the phosphorylayion of SHP-1-------------------- 97
Fig. 23. Establishment of sorafenib-resistant HCC cell lines
(Huh-7-SR1 and Huh-7-SR2)---------------------------------------------------- 98
Fig. 24. Dovitinib shows apoptotic effects in sorafenib-resistant HCC cells------99
Fig. 25. Dovitinib shows apoptotic effects in clinical HCC and leukemia cells--100
Fig. 26. In vivo effects of dovitinib on Huh-7 and PLC5 xenograft nude mice--101
Fig. 27 Sorafenib increases SHP-1 activity directly in vitro and in vivo-----------102
Fig. 28 N-SH2 domain of SHP-1 is critical for the biological effect of sorafenib--- 103
Fig. 29 Inhibitory N-SH2 domain of SHP-1 is the major target of sorafenib----104
Fig. 30 D61 in N-SH2 domain is critical for sorafenib-induced down-regulation of p-STAT3------------------------------------------------------------------------------106
Fig. 31 Sorafenib reactivates SHP-1 activity in N1-expressed PLC5 cells-------107
Fig. 32 Sorafenib directly affect the association between N1 and PTP catalytic domain of SHP-1--------------------------------------------------------------------108
Fig. 33 SHP-1 is a potential tumor suppressor in HCC cells------------------------109
Fig. 34 Expression level of SHP-1 is suppressed in HCC cells----------------------110
Fig. 35 Summary model--------------------------------------------------------------------111
References-------------------------------------------------------------------------------------112
dc.language.isoen
dc.subject肝癌標靶治療zh_TW
dc.subjecttargeting therapyen
dc.subjectSHP-1en
dc.subjectSorafeniben
dc.subjectDovitiniben
dc.subjectSTAT3en
dc.subjectHCCen
dc.titleSHP-1/STAT3訊息傳遞路徑於肝癌標靶治療之分子機制研究zh_TW
dc.titleSHP-1/STAT3-related signaling pathway in HCC targeting therapyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭安理,陳瑞華,張智芬,李芳仁
dc.subject.keyword肝癌標靶治療,zh_TW
dc.subject.keywordHCC,Sorafenib,targeting therapy,Dovitinib,STAT3,SHP-1,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2012-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
7.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved