Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65272
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳智泓(Chyh-Hong Chern)
dc.contributor.authorVictor Leeen
dc.contributor.author李宣衡zh_TW
dc.date.accessioned2021-06-16T23:33:57Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation1. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451(7175): p. 163-165.
2. Guthy, C., C.-Y. Nam, and J.E. Fischer, Unusually low thermal conductivity of gallium nitride nanowires. Journal of Applied Physics, 2008. 103(6).
3. Zhou, J.H., et al., Thermoelectric properties of individual electrodeposited bismuth telluride nanowires. Applied Physics Letters, 2005. 87(13).
4. Zhou, F., et al., Determination of Transport Properties in Chromium Disilicide Nanowires via Combined Thermoelectric and Structural Characterizations. Nano Letters, 2007. 7(6): p. 1649-1654.
5. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514-R2516.
6. Rego, L.G.C. and G. Kirczenow, Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Physical Review B, 1999. 59(20): p. 13080-13086.
7. Chiu, H.Y., et al., Ballistic phonon thermal transport in multiwalled carbon nanotubes. Physical Review Letters, 2005. 95(22): p. 226101.
8. Chang, C.W., et al., Breakdown of Fourier's law in nanotube thermal conductors. Physical Review Letters, 2008. 101(7): p. 075903.
9. Wang, Z.L., et al., Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Applied Physics Letters, 2007. 91(12): p. 123119.
10. Chang, C.W., et al., Isotope effect on the thermal conductivity of boron nitride nanotubes. Physical Review Letters, 2006. 97(8): p. 085901.
11. Zhang, G. and B.W. Li, Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. Journal of Chemical Physics, 2005. 123(11): p. 114714.
12. Terraneo, M., M. Peyrard, and G. Casati, Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 2002. 88(9): p. 094302.
13. Li, B.W., L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 2006. 88(14): p. 143501.
14. Wang, L. and B. Li, Thermal Logic Gates: Computation with Phonons. Physical Review Letters, 2007. 99(17): p. 177208.
15. Wang, L. and B. Li, Thermal Memory: A Storage of Phononic Information. Physical Review Letters, 2008. 101(26): p. 267203.
16. Chang, C.W., et al., Solid-state thermal rectifier. Science, 2006. 314(5802): p. 1121-1124.
17. Chang, C.W., et al., Tunable thermal links. Applied Physics Letters, 2007. 90(19): p. 193114.
18. Xie, R., et al., An Electrically Tuned Solid-State Thermal Memory Based on Metal–Insulator Transition of Single-Crystalline VO2 Nanobeams. Advanced Functional Materials, 2011. 21(9): p. 1602-1607.
19. Chang, C.W., et al., Nanotube phonon waveguide. Physical Review Letters, 2007. 99(4): p. 045901.
20. Kim, P., et al., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001. 87(21): p. 215502.
21. Chiritescu, C., et al., Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science, 2007. 315(5810): p. 351-353.
22. Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011. 10(8): p. 569-581.
23. Hammond, C.R., The Elements, in Handbook of Chemistry and Physics 81st edition. CRC press., 2004.
24. Wei, L., et al., Thermal conductivity of isotopically modified single crystal diamond. Physical Review Letters, 1993. 70(24): p. 3764-3767.
25. Mingo, N. and D.A. Broido, Length Dependence of Carbon Nanotube Thermal Conductivity and the “Problem of Long Waves”. Nano Letters, 2005. 5(7): p. 1221-1225.
26. Lindsay, L., D.A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules. Physical Review B, 2009. 80(12): p. 125407.
27. Shi, L., et al., Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat. Transfer., 2003. 125(5): p. 881-888.
28. Hofmann, M., et al., In-Situ Sample Rotation as a Tool to Understand Chemical Vapor Deposition Growth of Long Aligned Carbon Nanotubes. Nano Letters, 2008. 8(12): p. 4122-4127.
29. Hong, B.H., et al., Quasi-continuous growth of ultralong carbon nanotube arrays. J. Am. Chem. Soc., 2005. 127(44): p. 15336-15337.
30. Huang, S.M., X.Y. Cai, and J. Liu, Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc., 2003. 125(19): p. 5636-5637.
31. Zheng, L.X., et al., Ultralong single-wall carbon nanotubes. Nat. Mater., 2004. 3(10): p. 673-676.
32. Kittel, C., Introduction to Solid State Physics. 8th ed2004: Wiley.
33. Xu, Z.P. and M.J. Buehler, Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology, 2009. 20(18): p. 185701.
34. Liu, L.C., et al., Curvature effect on the phonon thermal conductivity of dielectric nanowires. Journal of Applied Physics, 2009. 105(10): p. 104313.
35. Heron, J.S., et al., Blocking phonons via nanoscale geometrical design. Physical Review B, 2010. 82(15): p. 155458.
36. Hone, J., et al., Quantized phonon spectrum of single-wall carbon nanotubes. Science, 2000. 289(5485): p. 1730-1733.
37. Osman, M.A. and D. Srivastava, Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Physical Review B, 2005. 72(12): p. 125413.
38. Yi, W., et al., Linear specific heat of carbon nanotubes. Physical Review B, 1999. 59(14): p. R9015-R9018.
39. Bhowmick, S. and V.B. Shenoy, Effect of strain on the thermal conductivity of solids. Journal of Chemical Physics, 2006. 125(16): p. 164513.
40. Picu, R.C., T. Borca-Tasciuc, and M.C. Pavel, Strain and size effects on heat transport in nanostructures. Journal of Applied Physics, 2003. 93(6): p. 3535-3539.
41. Li, X., et al., Strain effects on the thermal conductivity of nanostructures. Physical Review B, 2010. 81(24): p. 245318.
42. Shima, H., Buckling of Carbon Nanotubes: A State of the Art Review. Materials, 2012. 5(1): p. 47-84.
43. Nishimura, F., et al., Thermal Conductance of Buckled Carbon Nanotubes. Japanese Journal of Applied Physics, 2012. 51(1): p. 015102.
44. Rydberg, H., et al., Van der Waals density functional for layered structures. Physical Review Letters, 2003. 91(12): p. 126402.
45. Slack, G.A., ANISOTROPIC THERMAL CONDUCTIVITY OF PYROLYTIC GRAPHITE. Physical Review, 1962. 127(3): p. 694-&.
46. Yuzvinsky, T.D., et al., Precision cutting of nanotubes with a low-energy electron beam. Applied Physics Letters, 2005. 86(5): p. 053109.
47. Krasheninnikov, A.V. and F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials, 2007. 6(10): p. 723-733.
48. Primak, W. and L. Fuchs, THE ELECTRICAL CONDUCTIVITIES OF NATURAL GRAPHITE CRYSTALS. Physical Review, 1952. 86(4): p. 651-651.
49. Dutta, A.K., ELECTRICAL CONDUCTIVITY OF SINGLE CRYSTALS OF GRAPHITE. Physical Review, 1953. 90(2): p. 187-192.
50. Primak, W. and L.H. Fuchs, ELECTRICAL CONDUCTIVITIES OF NATURAL GRAPHITE CRYSTALS. Physical Review, 1954. 95(1): p. 22-30.
51. Primak, W., C-AXIS ELECTRICAL CONDUCTIVITY OF GRAPHITE. Physical Review, 1956. 103(3): p. 544-546.
52. Matsubara, K., K. Sugihara, and T. Tsuzuku, ELECTRICAL-RESISTANCE IN THE C-DIRECTION OF GRAPHITE. Physical Review B, 1990. 41(2): p. 969-974.
53. Bourlon, B., et al., Determination of the intershell conductance in multiwalled carbon nanotubes. Physical Review Letters, 2004. 93(17): p. 176806.
54. Deniz, H., A. Derbakova, and L.-C. Qin, A systematic procedure for determining the chiral indices of multi-walled carbon nanotubes using electron diffraction-each and every shell. Ultramicroscopy, 2010. 111(1): p. 66-72.
55. Yoon, Y.G., P. Delaney, and S.G. Louie, Quantum conductance of multiwall carbon nanotubes. Physical Review B, 2002. 66(7): p. 073407.
56. Costescu, R.M., et al., Ultra-low thermal conductivity in W/Al2O3 nanolaminates. Science, 2004. 303(5660): p. 989-990.
57. Goodson, K.E., Ordering up the minimum thermal conductivity of solids. Science, 2007. 315(5810): p. 342-343.
58. Alvarez-Quintana, J., et al., Ultra-Low Thermal Conductivity in Nanoscale Layered Oxides. J. Heat Transfer, 2010. 132(3): p. 032402.
59. Hopkins, P.E., et al., Ultra-low thermal conductivity of ellipsoidal TiO2 nanoparticle films. Applied Physics Letters, 2011. 99(13): p. 133106.
60. Ishigami, M., et al., Observation of the giant stark effect in boron-nitride nanotubes. Physical Review Letters, 2005. 94(5): p. 056804.
61. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705-814.
62. Prunnila, M. and J. Meltaus, Acoustic Phonon Tunneling and Heat Transport due to Evanescent Electric Fields. Physical Review Letters, 2010. 105(12): p. 125501.
63. Altfeder, I., A.A. Voevodin, and A.K. Roy, Vacuum Phonon Tunneling. Physical Review Letters, 2010. 105(16): p. 166101.
64. Feinberg, G. and J. Sucher, General Theory of the van der Waals Interaction: A Model-Independent Approach. Physical Review A, 1970. 2(6): p. 2395-2415.
65. Lepri, S., Relaxation of classical many-body Hamiltonians in one dimension. Physical Review E, 1998. 58(6): p. 7165-7171.
66. Narayan, O. and S. Ramaswamy, Anomalous heat conduction in one-dimensional momentum-conserving systems. Physical Review Letters, 2002. 89(20).
67. Lepri, S., R. Livi, and A. Politi, On the anomalous thermal conductivity of one-dimensional lattices. Europhysics Letters, 1998. 43(3): p. 271-276.
68. Lepri, S., R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices. Physics Reports-Review Section of Physics Letters, 2003. 377(1): p. 1-80.
69. Dhar, A., Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Physical Review Letters, 2001. 86(16): p. 3554-3557.
70. Lepri, S., R. Livi, and A. Politi, Heat conduction in chains of nonlinear oscillators. Physical Review Letters, 1997. 78(10): p. 1896-1899.
71. Wang, J.A. and J.S. Wang, Carbon nanotube thermal transport: Ballistic to diffusive. Applied Physics Letters, 2006. 88(11).
72. Basile, G., C. Bernardin, and S. Olla, Momentum Conserving Model with Anomalous Thermal Conductivity in Low Dimensional Systems. Physical Review Letters, 2006. 96(20): p. 204303.
73. Maruyama, S., A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube. Microscale Thermophysical Engineering, 2003. 7(1): p. 41-50.
74. Yu, C.H., et al., Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 2005. 5(9): p. 1842-1846.
75. Stanford Research Systems Manual. MODEL SR850 DSP Lock-In Amplifier, 1992.
76. Incropera, F.P., et al., Fundamentals of heat and mass transfer. (Wiley, Hoboken, N. J., ed. 6th, 2007): p. 127.
77. Segal, D. and A. Nitzan, Spin-Boson Thermal Rectifier. Physical Review Letters, 2005. 94(3): p. 034301.
78. Li, B.W., L. Wang, and G. Casati, Thermal diode: Rectification of heat flux. Physical Review Letters, 2004. 93(18): p. 184301.
79. Wu, G. and B. Li, Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations. Physical Review B, 2007. 76(8): p. 085424.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65272-
dc.description.abstract實驗上,量測單一奈米碳管的熱導率是個相當困難的工作。這篇論文的第一部分,將介紹如何克服樣品製備、量熱裝置製作、及量測上的種種困難。接下來就能用實驗探測一維系統熱傳遞的三個極限:(1)一維熱傳遞在彎曲應變下的極限 (2)熱導率的最低極限 (3)熱導率的最高極限。
  單壁奈米碳管是典型的一維材料,而且具有極高的力學強度和很長的聲子平均自由徑。論文的第二部分為單壁奈米碳管在週期性力學彎曲下的熱導率量測。特別的是,就算聲子平均自由徑超過其彎曲的曲率半徑,奈米碳管的熱導率始終維持不變。我們的實驗結果不能用傳統的熱傳導理論來解釋。
在論文的第三部分,我們將以實驗證明,自然界中最弱的化學鍵可以有最低的熱導率,同時我們也看到了不尋常的聲子穿隧現象。當高品質的多壁奈米碳管一層層被剝離,其電導率和熱導率有巨大、階梯狀的減少。我們發現多壁奈米碳管電導率和熱導率的各向異性超過106倍。經過換算,多壁奈米碳管層與層之間的熱導率在室溫下小於2×10-3 W/m-K,比目前所知最好的熱絕緣體的熱導率還小了至少25倍。
論文的最後一部分是我們量測到熱導率的最高極限。我們在超長單壁奈米碳管中,測量到不遵守傅立葉定律、熱導率隨長度發散的現象,此發散現象使1.039公厘長的單壁奈米碳管熱導率高達8396 W/m-K。我們發現熱導率與長度的0.25次方發散,且直至1.039公厘長都沒有停止發散的趨勢。另一方面,在某些單壁奈米碳管樣品中,我們有量測到不對稱的熱傳導現象。
zh_TW
dc.description.abstractExperimental investigations of thermal conductivities of individual nanotube are challenging. In the introductory part of my thesis, I describe several attempts and methods to overcome the difficulties in thermodevice fabrications, sample preparations, and manipulations. Overcoming these challenges thus allows me to experimentally investigate the limits of heat transport in one-dimensional (1D) systems in three different aspects. (1) The limit of 1D heat transfer under extreme bending strain. (2) The lowest limit of thermal conductivity. (3) The highest limit of thermal conductivity.
Single-wall carbon nanotubes (SWCNTs) as typical 1D materials have been shown to exhibit excellent mechanical properties and very long phonon mean free paths. In the second part of my thesis, I report in situ measurements of individual SWCNTs under cyclic mechanical bending. Surprisingly, we find that the thermal conductivity of the SWCNT remains intact even the characteristic phonon mean free path beyond the theoretical limit set by the radius of curvature. Our results strongly challenge the traditional theory of heat transfer.
In the third part of the thesis, we demonstrate the lowest thermal conductivity of matters can be obtained in the weakest chemical bond of nature, in which the heat conduction displays unusual phonon tunneling behavior unfound before. Giant stepwise reductions of electrical/thermal conductivity are observed when the layers of high quality multiwall carbon nanotubes are removed one by one. We find that electrical and thermal anisotropy is more than 106. Correspondingly, the interlayer thermal conductivity of a nanotube is less than 2×10-3 W/m-K at room temperature, which is at least 25 times lower than that of the best thermal insulator known so far.
In the last part of the thesis, we investigate the highest limit of thermal conductivity. The non-Fourier, divergent thermal conductivity is found in ultralong SWCNTs, leading to thermal conductivities as high as 8396 W/m-K in a 1.039 mm long SWCNT. The thermal conductivity is found to diverge with lengths to the power of 0.25 for SWCNTs. Moreover, the thermal conductivity shows no sign of saturation for sample lengths up to 1.039 mm. On the other hand, asymmetric thermal conductance is also observed in some of the SWCNT samples.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:33:57Z (GMT). No. of bitstreams: 1
ntu-101-R99222015-1.pdf: 10068740 bytes, checksum: 12fe37072a31d7050329ee75621fdc8f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Contents V
List of figures VII
Chapter 1 Introduction 1
1.1 Backgrounds 1
1.2 Experimental methods 4
1.2.1 Thermodevice design and measurements 4
1.2.2 Finite element analysis on devices 5
1.2.3 New thermodevice design and fabrication 6
1.2.4 SWCNT synthesis 10
1.2.5 Tungsten tip preparation 11
1.2.6 Sample manipulation 12
Chapter 2 The refined limit of heat transfer under extreme strain 14
2.1 Introduction 14
2.2 Experiments 17
2.3 Results and discussions 19
2.4 Summary 25
Chapter 3 Ultralow thermal conductivity and phonon tunneling across van der Waals interactions 26
3.1 Introduction 26
3.2 Experiments 28
3.3 Results and discussions 31
3.4 Summary 41
Chapter 4 Non-Fourier heat conduction in ultralong single-wall carbon nanotubes 42
4.1 Introduction 42
4.2 Experiments 44
4.3 Results and discussions 51
4.4 Summary 56
Chapter 5 Conclusion 57
References 58
dc.language.isoen
dc.subject一維材料zh_TW
dc.subject聲子穿隧zh_TW
dc.subject熱絕緣體zh_TW
dc.subject熱導率zh_TW
dc.subject熱傳遞zh_TW
dc.subject應變zh_TW
dc.subject非傅立葉熱傳導zh_TW
dc.subject奈米碳管zh_TW
dc.subjectphonon tunnelingen
dc.subjectthermal conductivityen
dc.subjectone-dimensional materialen
dc.subjectcarbon nanotubeen
dc.subjectstrainen
dc.subjectthermal insulatoren
dc.subjectheat transferen
dc.subjectnon-Fourier heat conductionen
dc.title探索一維熱傳遞現象之極限zh_TW
dc.titleProbing the Limits of One-Dimensional Heat Transfer Phenomenaen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor張之威(Chih-Wei Chang)
dc.contributor.oralexamcommittee朱明文(Ming-Wen Chu)
dc.subject.keyword熱傳遞,熱導率,一維材料,奈米碳管,應變,熱絕緣體,聲子穿隧,非傅立葉熱傳導,zh_TW
dc.subject.keywordheat transfer,thermal conductivity,one-dimensional material,carbon nanotube,strain,thermal insulator,phonon tunneling,non-Fourier heat conduction,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf
  Restricted Access
9.83 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved