請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65270完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴亮全(Liang-Chuan Lai) | |
| dc.contributor.author | Yi-Jyun Liu | en |
| dc.contributor.author | 劉怡君 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:33:50Z | - |
| dc.date.available | 2016-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | 1. Jemal, A., et al., Cancer statistics, 2008. CA Cancer J Clin, 2008. 58(2): p. 71-96.
2. Rowell, N.P. and P. O'Rourke N, Concurrent chemoradiotherapy in non-small cell lung cancer. Cochrane Database Syst Rev, 2004(4): p. CD002140. 3. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 4. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5. 5. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20. 6. Friedman, R.C., et al., Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009. 19(1): p. 92-105. 7. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69. 8. Kloosterman, W.P. and R.H. Plasterk, The diverse functions of microRNAs in animal development and disease. Dev Cell, 2006. 11(4): p. 441-50. 9. Shin, S., et al., Alteration of miRNA profiles by ionizing radiation in A549 human non-small cell lung cancer cells. Int J Oncol, 2009. 35(1): p. 81-6. 10. Girardi, C., et al., Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One, 2012. 7(2): p. e31293. 11. Niemoeller, O.M., et al., MicroRNA expression profiles in human cancer cells after ionizing radiation. Radiat Oncol, 2011. 6: p. 29. 12. Cha, H.J., et al., Identification of ionizing radiation-responsive microRNAs in the IM9 human B lymphoblastic cell line. Int J Oncol, 2009. 34(6): p. 1661-8. 13. Jeong, S.H., H.G. Wu, and W.Y. Park, LIN28B confers radio-resistance through the posttranscriptional control of KRAS. Exp Mol Med, 2009. 41(12): p. 912-8. 14. Oh, J.S., et al., Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys, 2010. 76(1): p. 5-8. 15. Arora, H., et al., miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mol Med, 2011. 43(5): p. 298-304. 16. Lee, K.M., E.J. Choi, and I.A. Kim, microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling. Radiother Oncol, 2011. 101(1): p. 171-6. 17. Chen, S., et al., Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int J Radiat Oncol Biol Phys, 2011. 81(5): p. 1524-9. 18. Babar, I.A., et al., Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther, 2011. 12(10): p. 908-14. 19. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 20. Chang, Y.W., et al., CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer, 2005. 116(2): p. 243-52. 21. Gao, M., et al., NF-kappaB p50 promotes tumor cell invasion through negative regulation of invasion suppressor gene CRMP-1 in human lung adenocarcinoma cells. Biochem Biophys Res Commun, 2008. 376(2): p. 283-7. 22. Liu, Y.C., et al., Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci U S A, 2011. 108(28): p. 11332-7. 23. Tian, T., et al., Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci, 2007. 98(8): p. 1265-74. 24. Chang, C.C., et al., Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst, 2004. 96(5): p. 364-75. 25. Shih, J.Y., et al., Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst, 2001. 93(18): p. 1392-400. 26. Ho, C.C., et al., Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol, 2002. 161(5): p. 1647-56. 27. Lize, M., S. Pilarski, and M. Dobbelstein, E2F1-inducible microRNA 449a/b suppresses cell proliferation and promotes apoptosis. Cell Death Differ, 2010. 17(3): p. 452-8. 28. Yang, X., et al., miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev, 2009. 23(20): p. 2388-93. 29. Noonan, E.J., et al., miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene, 2009. 28(14): p. 1714-24. 30. Bou Kheir, T., et al., miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer, 2011. 10: p. 29. 31. Marcet, B., et al., Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat Cell Biol, 2011. 13(6): p. 693-9. 32. Lize, M., et al., MicroRNA-449a levels increase by several orders of magnitude during mucociliary differentiation of airway epithelia. Cell Cycle, 2010. 9(22): p. 4579-83. 33. Branzei, D. and M. Foiani, Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol, 2008. 9(4): p. 297-308. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65270 | - |
| dc.description.abstract | 肺癌是所有癌症中死亡率最高的一種。輻射線常用於治療肺癌,但輻射治療常因病人體內癌細胞具有輻射線抗性而失敗,或成效不彰。因此,癌細胞調控輻射線抗性的分子機制是目前備受關注的研究議題。微小RNA (MicroRNA)已被報導具有調控輻射線感受性的能力,故其可能是一個可以改善輻射治療成效的因素。
兩株肺腺癌細胞,CL1-0及CL1-5,在過去研究中已知它們的轉移、侵襲能力有所不同;而在這份研究中,我們另外發現了這兩株細胞對輻射線的感受性亦不相同。暴露在同樣劑量的輻射線之下,CL1-0細胞的存活率高於CL1-5細胞;輻射線所導致之凋亡的細胞比例在CL1-5細胞多於CL1-0細胞;另外CL1-5細胞經過輻射處理,細胞週期將會停滯在G2/M期。為了了解這些輻射感受性差異是緣於何種調控機制,我們將這兩株細胞以10 Gy劑量輻射處理後,分別在處理之後的0、1、4、24小時收下細胞,並以這些細胞進行microRNA microarray實驗。透過這樣的篩選,其中25個microRNA的表現量因輻射處理而有顯著的變化。miR-449a是在CL1-0細胞經輻射處理後的24小時顯著被抑制的一個microRNA,因此,我們在CL1-0細胞中大量表現miR-449a,並以此細胞進行輻射處理。可發現miR-449a的存在使CL1-0細胞在輻射暴露下DNA損壞程度大增、凋亡的比例升高、並且改變了細胞週期分佈的型態,最終使得CL1-0細胞對輻射更為敏感。 總結以上所述,這份研究說明了在輻射處理之下,miR-449a可以透過增加凋亡比例,導致細胞週期停滯於G2/M期,並且降低細胞輻射後存活率以增進細胞對輻射處理之感受性。故miR-449a可能是一個可應用於臨床的輻射調控因子。 | zh_TW |
| dc.description.abstract | Lung cancer is the leading cause of cancer-related mortality worldwide. Radiotherapy is often applied for treating lung cancer. One of the main causes of radiotherapy failure is the relative susceptibility of cells in response to radiotherapy. Hence, understanding of the molecular mechanisms modulating radio-sensitivity has received much attention. MicroRNAs have been reported to modulate the radio-sensitivity and have the potential to improve the efficacy of radiotherapy.
Here, we found that two lung adenocarcinoma cell lines (CL1-0 and CL1-5) with different metastatic ability displayed different radio-sensitivity. The cell viability and clonogenic survival of CL1-0 were higher than that of CL1-5 after radiation treatment. Irradiation induced more cell death in CL1-5 than in CL1-0, and caused the G2/M arrest in CL1-5. In order to understand the regulatory machinery of different radiosensitivity in tumor cells with isogenic background, both CL1-0 and CL1-5 were treated with 10 Gy radiations, and were harvested respectively at 0, 1, 4, and 24 h after radiation exposure. The dynamics of genomic profiling of microRNA upon irradiation was examined using Illumina Human microRNA BeadChips. Twenty-five microRNAs were identified for the differential expression post irradiation in CL1-0 or CL1-5 cells. Among these microRNAs, miR-449a, which was down-regulated in CL1-0 cells at 24 h after irradiation, was chosen for further investigation. Over-expression of miR-449a in CL1-0 cells effectively increased irradiation-induced DNA damage and apoptosis, altered the cell cycle distribution and eventually led to sensitization of CL1-0 to irradiation. Taken together, this study showed miR-449a increased radio-sensitivity by enhancing apoptosis, inducing G2/M arrest, and suppressing cell viability. MiR-449a might be a novel radio-sensitizer for clinical application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:33:50Z (GMT). No. of bitstreams: 1 ntu-101-R98441017-1.pdf: 1750962 bytes, checksum: eed86ff67e2d6330e2e3c427d2744467 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Chapter 1. Introduction 1 Lung cancer and Radio-resistance 1 MicroRNA 2 The aim of the study 3 Chapter 2. Materials and Methods 4 Cell culture, Plasmid and microRNA transfection 4 RNA extraction, Reverse transcription and Real-time PCR quantification 5 Microarray data analysis 6 Flow cytometry analysis of cell cycle and cell death 6 Clonogenic assay 7 Western blot 8 MTT assay 9 Chapter 3. Results 10 CL1-0 cells were radio-resistant as compared to CL1-5. 10 Identification of microRNA regulating radio-sensitivity. 13 MiR-449a sensitized CL1-0 cells to DNA damage post irradiation treatment. 15 Irradiation-induced apoptosis was enhanced by miR-449a 18 MiR-449a enhanced G2/M arrest post irradiation 21 After irradiation treatment, ectopic miR-449a efficiently suppressed cell viability by MTT assay, but could not affect the clonogenic survival. 22 Chapter 4. Discussion 25 Lung adenocarcinoma cell lines, CL1-0 and CL1-5, served as a model for studying radio-sensitivity. 25 MicroRNA microarray data analysis 26 MiR-449a was selected for further experiments. 27 MiR-449a enhanced apoptosis before and after radiation exposure. 28 Post irradiation response of cell cycle in miR-449a over-expressed CL1-0 was similar to that of CL1-5. 29 MiR-449a inhibited cell viability of CL1-0 post irradiation using MTT assay but not clonogenic assay. 30 Limitations 31 Summary 32 References 33 Appendix 38 | |
| dc.language.iso | en | |
| dc.subject | 微小RNA | zh_TW |
| dc.subject | miR-449a | zh_TW |
| dc.subject | 微陣列 | zh_TW |
| dc.subject | 輻射線感受性 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | microRNA | en |
| dc.subject | miR-449a | en |
| dc.subject | microarray | en |
| dc.subject | radio-sensitivity | en |
| dc.subject | lung adenocarcinoma | en |
| dc.title | MiR-449a增加肺腺癌細胞對輻射線之感受性 | zh_TW |
| dc.title | MicroRNA-449a Enhances Radio-sensitivity of Lung Adenocarcinoma Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊曜宇(Eric Y. Chuang),蔡孟勳(Mong-Hsun Tsai) | |
| dc.subject.keyword | 微小RNA,miR-449a,微陣列,輻射線感受性,肺癌, | zh_TW |
| dc.subject.keyword | microRNA,miR-449a,microarray,radio-sensitivity,lung adenocarcinoma, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
