請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65263完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁建均 | |
| dc.contributor.author | Guan-Chen Pan | en |
| dc.contributor.author | 潘冠臣 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:33:28Z | - |
| dc.date.available | 2015-07-30 | |
| dc.date.copyright | 2012-07-30 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | Abstract
[1] ISO/IEC 10918-1 and ITU-T Recommendation T. 81. Information technology- digital compression and coding of continuous-tone still images: Requirements and guidelines, 1994. [2] Gregory K. Wallace, 'The JPEG still picture compression standard,' IEEE Trans. Consumer Electronics, vol. 38, issue 1, pp. xviii – xxxiv, Feb. 1992. [3] Ze-Nian Li, and Mark S.Drew, 'Chapter 9: Image Compression Standards,' Fundamentals of Multimedia, pp. 253-265, Prentice-Hall, 2004. JPEG2000 [4] ISO/IEC15444-1: Information Technology-JPEG2000 image coding system-Part 1L core coding system, 2000. [5] C. Christopoulos, A. Skodras, and T. Ebrahimi, 'The JPEG2000 still image coding system: an overview,' IEEE Trans. Electronics Consumers, vol. 44, Issue 4, pp. 1103-1127 Nov. 2000. [6] M. Rabbani, R. Joshi, 'An overview of the JPEG2000 still image compression standard,' Signal Processing: Image Communication, vol. 17, no. 1, pp. 3-48, Jan. 2002. [7] D.S. Taubman, and M.W. Marcellin, 'JPEG2000: Image Compression Fundamentals, Standards and Practice,' Norwell, MA: Kluwer Academic Publishers, 2002. [8] D. S. Taubman, “High-Performance Scalable Image Compression with EBCOT,” IEEE Transactions on Image Processing, Vol. 9, No. 7, pp.1158-1170, July 2000. [9] ISO/IEC JTC1/SC29/WG1 (ITU-T SG8) N2165, “JPEG2000 Verification Model 9.1 (Technical Description),” June 2001. [10] R. C. Gonzalez, R. E. Woods, Digital Image Processing second edition, Prentice Hall, 2002 [11] Tinku Acharya, Ping-Sing Tsai, JPEG2000 Standard for Image Compression: Concepts Algorithms and VLSI Architectures, John Wiley & Sons, Inc, 2005, ISBN: 0-471-48422-9 Proposed Method in JPEG2000 [12] Xin li, Michael T. Orchard, “Edge-Directed Prediction for Lossless Compression of Natural Images,” IEEE Transactions on Image Processing, Vol. 10, No. 6, pp.813-817, June 2001. Golomb Coding [13] S. W. Golomb, “Run length encodings,” IEEE Trans. Information Theory, vol. IT12, p.399-401, 1966. [14] K. Sayood, “Golomb codes,” Introduction to Data Compression, pp.61-64, 2000. [15] I. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next Generation, John Wiley and Sons, 2003. [16] R. F. Rice, “Some practical universal noiseless coding technique – part I and part III, ” Tech. Rep. JPL-19-22 and JPL-91-3, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1979 and Nov. 1991 [17] J. Teyhola, “A compression method for clustered bit-vectors,” Information Processing Letters, vol. 7, no. 6, p.308-311, Oct. 1978. [18] S. Xue, Y. Xu, and B. Oelmann, “Hybrid Golomb codes for a group of quantized GG sources,” IEEE Proceedings-Vision, Image and Signal Processing, vol. 150, no. 4. pp. 256-260, Aug. 2003. [19] N. Merhav, G. Seroussi, and M. T. Weinberger, “modeling and low-complexity adaptive,” in Proc. Of the 1996 Int’l Conference on Processing, vol. II pp. 353-356, Sept. 1996. [20] G. Seroussi, and M. J. Weinberger, “On adaptive strategies for an extemded family of Golomb-type codes,” in Proc DCC’97, pp. 131-140, 1997 [21] A. Said, “On the determination of optimal parameterized profix codes for adaptive entropy coding” HP Labs Report, Palo Alto, CA Apr. 2006 [22] R. Achanta, S.Hemami, F.Estrada, and S.Susstruck. Frequency-tuned salient region detection. In CVPR, pp. 1597-1604, 2009 [23] Central Whether Bureau in Taiwan, http://www.cwb.gov.tw/V7/climate/30day/30day.htm DCT + DWT [24] Nikolay N. Ponomarenko, Karen O. Egiazariaz, Vladimir V. Lukin, Jaakko T. Astola, “DCT Based High Quality Image Compression”, Proc. Scandinavian Conf. Image Analysis, vol. 3540, pp.1177 2005 [25] Egiazarian, K.,Helsingius, M., Kuosmanen, P., Astola, J “Removal of Blocking and Ringing Artifacts Using Transform Domain Denoising,” ISCAS’99, Vol.4, pp. 139-142. July 1999 [26] Nikolay N. Ponomarenko, Karen O. Egiazariaz, Vladimir V. Lukin, Jaakko T. Astola, “High-Quality DCT-Based Image Compression Using Partition Schemes,” IEEE Signal Processing Letters, Vol. 14, No.2, pp.105-108, February 2007 [27] C. Chrysafis, A. Ortega, “Line-Based, Reduced Memory, Wavelet Image Compression”, IEEE Transactions on Image Processing, Vol. 9, No. 3, pp.378-389, March 2000. [28] A. Said, W. A. Pearlman, “An Image Multiresolution Representation for Lossless and Lossy Compression”, IEEE Transactions on Image Processing, Vol. 5, No. 9, pp.1303-1310, September 1996. [29] A. Said, W. A. Pearlman, “A New Fast and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 6, No. 3, pp.243-250, June 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65263 | - |
| dc.description.abstract | 隨著網路以及多媒體的進步,人們對於影像以前影片的需求越來越高了。在過去,人們對於影像以及影片的需求僅止於清晰的圖片或是撥放順暢的影片即可。但隨著時代的進步,這些已經不能滿足人們的需求。許多高解析度、高品質的影像以及影片等規格紛紛出現,像是HD高規格的影片。因為如此,所以影像以及影片的容量也隨之增加。因為這些高規格的影像以及影片需要大量的儲存容量,所以許多不同的壓縮技術也隨之產生。最有名的影像壓縮技術應該非JPEG莫屬,它是Joint Photographic Experts Group的縮寫。JPEG是世界上最有名的影像壓縮標準,而且直到現在都還是廣為全世界所使用。
霍夫曼編碼是JPEG裡面所使用的熵編碼方法,而且也是世界上有名的熵編碼方法之一。然而當一個輸入資料呈現幾何分布的時候,霍夫曼編碼會無法處理這樣類型的資料。為了解決這類型的問題,格倫布編碼就隨之誕生了。格倫布編碼也是一種熵編碼方法,而且特別是對於輸入資料呈現幾何分布的時候,格倫布編碼特別的有效。而且相較於霍夫曼編碼需要紀錄編碼表才可以將資料解碼,格倫布編碼不需要紀錄編碼表就可以將資料解碼。但是格倫布編碼也有缺點,當輸入資料不呈現幾何分布的時候,格倫布編碼的效果就無法達到那麼好。另外,通常我們的輸入資料都是有正數跟負數的,但是格倫布編碼只適用於正數。也就是說,當輸入資料有負數或是呈現非幾何分布的時候,我們就不適合用格倫布編碼去處理。為了解決這個問題,我們提出了改良過後的格倫布編碼以及非對稱的幾何分布模型。改良過後的格倫布編碼以及非對稱的幾何分布模型可以使用在許多地方,而且它的效果也非常好。 此外,也是有許多不同的壓縮方法也非常有名,像是JPEG2000以及SPIHT等,也都比JPEG擁有更好的壓縮效率以及品質。在JPEG2000裡面,算術編碼是他的熵編碼方法,而且在JPEG2000使用的算術編碼中,它的機率分布表示固定的。因為如果要把每個機率分布表都記錄下來的話需要很多的儲存空間,所以JPEG2000是採用統一的機率分布表來處理每一筆資料,而且仍然有很好的壓縮效果。為了想辦法改善機率分布表的問題,我們提出了新的算術編碼方法,它不僅可以使用多個機率分布表,而且它整體的壓縮效果比JPEG2000更為優秀。 緩衝暫存空間在影像壓縮中也是個值得探討的問題。因為現在的隨身裝置,像是數位相機,智慧型手機等等的體積越來越小,所以在這些裝置上的儲存空間也越來越珍貴。在使用相同的緩衝暫存空間來達到更好的影像壓縮品質或許會是一個很好的研究方向。在此我們提出了一個新的方法,結合了離散餘弦轉換以及離散小波轉換。相較於傳統的JPEG標準,我們的方法跟他們在緩衝暫存空間的需求上相同,但卻有比他們更好的壓縮效果。 | zh_TW |
| dc.description.abstract | With the advancement of the Internet and the multimedia, the demand of people in image and video becomes higher and higher. In the past days, the requirements may be just a clear photo or a smooth video, but people did not satisfy with that. So the high quality image and video have been come out, such as high resolution pictures, high definition (HD) video, and full high definition (full HD) video. Because the size of multimedia data becomes higher, so people need to find some new ways to deal with the high data size of the multimedia. To solve the problem, there are some of the compression techniques. The most well-known image compression technique is Joint Photographic Experts Group 0[2][3], which is also called JPEG. JPEG is the most popular standard in image compression and still have been widely used in the worldwide nowadays.
The Huffman coding is used in JPEG, and it is the most famous entropy coding method and widely used in many images and video coding standards. Nevertheless, Huffman coding cannot be used if the source is ideally geometrically distributed because the number of elements is infinite. But Golomb coding can do well when the source is ideally geometrically distributed. Golomb coding is a good entropy coding method when the data source is geometric distribution, and it does not need coding table, but Huffman coding does. Nonetheless when the input data is not geometric distribution, the Golomb coding may not be a good choice. Moreover, the input data may be positive and negative numbers, but the Golomb coding is only for positive numbers. To solve the problem, we proposed the modified Golomb coding with asymmetric two-sided geometric distributed data. It can be used in many ways, and can have better performance. In addition, there are still some famous image compression standards, such as JPEG2000, SPIHT, and …etc. Some of them have better performance in compression than that of JPEG. JPEG2000 [4][7][8] is another worldwide image compression standard, and can have better compression ratio and image quality than JPEG does. The arithmetic coding is used in the encoder of JPEG2000, and its probability table is fixed. Because record every probability table needs lots of storage space, it may be not efficient to record every probability table and the compression ratio may be worse. So the JPEG2000 standard used a fixed probability table to deal with everything, and still have good performance. To improve this part, we proposed a new kind of arithmetic coding, which can use arithmetic coding with different probability table, but still have better compression ratio than that of JPEG2000. The buffer size of the image compression standard is still another problem. Due to the size of mobile systems, such as digital cameras and cell phones, is becoming smaller today. The storage space of those systems may be more precious. Using the same buffer size to have the better image quality may be another good topic for image compression. To deal with this topic, we proposed a new method, which is combined discrete cosine transform and discrete wavelet transform. Compare to the JPEG standard, our method need the same buffer size as JPEG, but have better performance than that of JPEG. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:33:28Z (GMT). No. of bitstreams: 1 ntu-101-R99942126-1.pdf: 3058618 bytes, checksum: 5ebf69d7c4384a56aac83c087bcff1ce (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Primary Achievements of This Thesis 2 1.3 Organization 5 Chapter 2 JPEG2000 7 2.1 The encoder of the JPEG2000 8 2.1.1 Preprocessing and Forward Component Transform 8 2.1.2 Forward Wavelet Transform 9 2.1.3 Quantization 15 2.1.4 Tier-1 Encoder 16 2.2 Fractional Bit-Plane Coding 18 2.2.1 Coding Operations 20 2.2.2 Coding Passes 25 2.3 Arithmetic Coding 28 2.3.1 Arithmetic Coding 28 2.3.2 The Algorithm of the Arithmetic Coding 29 2.4 Binary Arithmetic Coding – MQ Coder 31 Chapter 3 Proposed Method in the JPEG2000 35 3.1 Proposed Method 36 3.2 Edge-Directed Prediction 36 3.3 Edge or Non-edge 39 3.4 Proposed Arithmetic Coding 44 3.4.1 Method 1: 47 3.4.2 Method 2: 49 3.5 Experimental Results 51 3.6 Discussion 55 Chapter 4 Modified Golomb Coding and Asymmetric Two-Sided Geometric Distribution Data 57 4.1 Golomb Coding 57 4.2 Geometric Distribution 59 4.3 Proposed Modified Golomb Coding for Asymmetric Two-Sided Geometrically Distribution Data 60 4.4 The Verification to Prove the Correctness of the Proposed Modified Golomb Codes 64 4.5 Experimental Results 67 4.5.1 Example 1: Encoding the Boundaries of Objects in Binary Image Compression 67 4.5.2 Example 2: Using the Proposed Code for DC Term Differential Coding JPEG Procedure 70 4.5.3 Example 3: Encoding the Temperature Data 74 4.6 Discussion 77 Chapter 5 Proposed the DCT with the DWT Transform 79 5.1 Related Work 80 5.2 DCT with DWT 81 5.2.1 DCT with DWT 82 5.2.2 Quantization 82 5.2.3 Bit-plane conversion 85 5.2.4 Encoder 87 5.3 Experimental Results 88 5.4 Discussion 93 Chapter 6 Conclusions and Future Work 95 6.1 Conclusions 95 6.2 Future work 96 REFERENCE 98 | |
| dc.language.iso | en | |
| dc.subject | 影像壓縮 | zh_TW |
| dc.subject | JPEG | zh_TW |
| dc.subject | JPEG2000 | zh_TW |
| dc.subject | 霍夫曼編碼 | zh_TW |
| dc.subject | 格倫布編碼 | zh_TW |
| dc.subject | 非對稱 | zh_TW |
| dc.subject | 幾何分布 | zh_TW |
| dc.subject | 算術編碼 | zh_TW |
| dc.subject | 機率分布表 | zh_TW |
| dc.subject | 緩衝暫存空間 | zh_TW |
| dc.subject | Buffer size | en |
| dc.subject | Image Coding | en |
| dc.subject | JPEG | en |
| dc.subject | JPEG2000 | en |
| dc.subject | Huffman coding | en |
| dc.subject | Golomb coding | en |
| dc.subject | Asymmetric | en |
| dc.subject | Geometric distribution | en |
| dc.subject | Arithmetic coding | en |
| dc.subject | Probability table | en |
| dc.title | 改善格倫布編碼與 JPEG2000 之影像壓縮技術 | zh_TW |
| dc.title | The Improvement with Golomb Code and JPEG2000 in Image
Compression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾易聰,郭景明,張榮吉 | |
| dc.subject.keyword | 影像壓縮,JPEG,JPEG2000,霍夫曼編碼,格倫布編碼,非對稱,幾何分布,算術編碼,機率分布表,緩衝暫存空間, | zh_TW |
| dc.subject.keyword | Image Coding,JPEG,JPEG2000,Huffman coding,Golomb coding,Asymmetric,Geometric distribution,Arithmetic coding,Probability table,Buffer size, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
