請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高全良 | |
| dc.contributor.author | Yi-Tzu Chen | en |
| dc.contributor.author | 陳怡慈 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:32:47Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | 參考文獻
1. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992 ; 56(1) :152–179. 2. Tong S, Li Y, Rivailler P et al. A distinct lineage of influenza A virus from bats PNAS, Published online before print February 27, 2012 3. Nicholson KG. Clinical features of influenza. Semin Respir Infect 7(1) 1992; 26-37. 4. Wright PF, Kawaoka NGY: Orthomyxoviruses. Fields Virol 2007; 1691-1740. 5. CDC Swine influenza A (H1N1) infection in two children---Southern California, March–April 2009. MMWR 58: 402. 6. Centers for Disease Control, R.O.C. (Taiwan) 7. Lamb RA. Gene and protein of the influenza virus. The influenza viruses. New York:Plenum Press 1989; 1-87. 8. Palese P & Shaw ML. Orthomyxoviridae: the viruses and their replication. Fields Virol 2007; 1647–1689. 9. Yewdell JW and Hackett CJ. Specificity and function of T lymphocytes induced by influenza A virus. The influenza virus. New York: Ple¬num Press, 1989; 361-429. 10. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994 ; 371: 37-43 11. Wiely DC,Skehel JJ, Waterfield M. Evidence from studies with a cross-linking reagent that the haemagglutinin of influenza virus is a trimer. Virol 1977 ; 79(2): 446-8. 12. Wiely DC,Skehel JJ, The structure and function of haemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 1987; 56: 365-94. 13. Connor RJ, Kawaoka Y, Webster RG, Paulson JC. Receptor specificity in hu-man, avian, and equine H2 and H3 influenza virus isolates. Virol 1994; 205(1): 17-23. 14. Webster RG, Nancy Cox and Stohr K. WHO Manual on Animal Influ¬enza Diagnosis and Surveillance, WHO Global Influenza Programme,2002. 15. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigrntic structure of the influenza virus A/PR/8/34 haemagglutinin (H1 subtype). Cell 1982; 31(2): 417-27. 16. Palese P, Tobita K, Ueda M, Compans RW. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virol 1974; 61(2): 397-410. 17. Palese P, Compans RW. Inhibition of influenza virus replication in tissue cul¬ture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA):mechanism of action. J Gen Virol 1976; 33(1): 159-63. 18. Griffin JA, Basak S, Compans RW. Effects of hexose starvation and the role of sialic acid in influenza virus release. Virol 1983; 125(2): 324-34. 19. Burnet FM, JD Stone. The receptor destroying enzyme of V. chorelae. J. Exp. Biol. Med. Sci. 1947; 25: 227-233. 20. Gottschalk A. Neuraminidase; its substrate and mode of action. Adv Enzymol Relat Subj Biochem. 1958; 20: 135-46. 21. Tabak LA, Levine MJ, Mandel ID, Ellison SA. Role of salivary mucins in the protection of the oral cavity. J Oral Pathol 1982; 11(1): 1-17. 22. Gillian M. Air and W. Graeme Laver. The neuraminidase of influenza virus. Protein: structure, function, and genetics. 1989; 6: 341-356. 23. Bolk J, Air GM. Sequence variation at 3’ end of neuraminidase gene from 39 influenza type A viruses. Virol 1982; 121: 211-229. 24. Air GM, Ritchie LR, Laver WG, Colman PM. Gene and protein se¬quence of an influenza neuraminidase with hemagglutinin activity.Virol 1985; 145: 117-122. 25. Colman PM. Gene and proteins of the influenza viruses. In:Krug RM, ed. The influenza viruses. New York: Plenum Press, 1989; 175-218. 26. Zebedee SL, Lamb RA. Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 1988; 62 (8): 2762-72. 27. Murphy BR and Webster RG. Orthomyxoviridae. In Fields Virology. 3rd edn, New York: Raven Press, 1996. 28. Falcon AM, Marion RM, Zurcher T, Gomez P, Portela A, Nieto A, Ortin J. Defec¬tive RNA replication and late gene expression in temperature-sensitive vi-ruses expressing deleted forms of the NS1 protein. J Virol 2004; 78(8): 3880-8. 29. Krug RM. & Etkind PR. Cytoplasmic and nuclear virusspecific proteins in influenza virus-infected MDCK cells. Virol 1973; 56: 334–348. 30. O’Neill RE, alon J, Palese P. The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 1998 ;17(1): 288-96. 31. Marsh MA, Helenius A. Virus entry into animal cells. Adv. Virus Res. 1989; 36:107-151 32. Marsh MA, Helenius A. Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein(M1) promotes export and inhibits im¬port. Cell 1991; 67(1): 117-30 33. Whittaker G, Bui M, Helenius A. Nuclear trafficking of influenza virus ribonucleoproteins in hrterkaryons. J Virol 1996; 70(5): 2743-56. 34. Hay AJ, Lomnicizi B, Bellamy AR,Skehel JJ. Transcription of the influenza virus gemone. Virol 1977; 83(2): 337-55. 35. Barker WH & Mullooly JP. Pneumonia and influenzadeaths during epidemics: implications for prevention. Arch Intern Med 1982; 142: 85–89. 36. Simonsen L, Clarke MJ, Williamson GD, Stroup DF, Arden NH & Schonberger LB. The impact of influenza epidemics on mortality: introducing a severity index. Am J Public Health 1997; 87: 1944–1950. 37. Kawaoka Y, Krauss S, Webster RG. Avain-to-human transmission of the PB1 gene of influenza Avirus in the 1957 and 1968 pandemics. J Virol 1989; 63(11): 4603-8. 38. Hayden F, Croisier A: Transmission of avian influenza viruses to and between humans. J Infect Dis 2005; 192 : 1311–1314. 39. Bottcher C, Ludwig K, Herrmann A, van Heel M, Stark H Structure of infl uenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Lett 1999; 463: 255–259. 40. Childs RA, Palma AS, Wharton S, et al. Receptor-binding specificity of pan-demic influenza A (H1N1) 2009 virus determined by carbohydrate microar-ray. Nat Biotechnol 2009; 27: 797-799 41. VanRiel D, Munster VJ, deWit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD,Kui ken T : Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 2007;171: 1215–1223. 42. Van Riel D, den Bakker M,Leijten L, Chutinimitkul S, Munster V, de Wit E,Rimmelzwaan G, Fouchier R, Osterhaus A, Kuiken T: Seasonal and pan¬demic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am J Pathol 2010;176:1614–1618. 43. Baskin CR, Bielefeldt-Ohmann H, Tumpey TM, Sabourin PJ, Long JP, Garcia-Sastre A, Tolnay AE, Albrecht R, Pyles JA, Olson PH, Aicher LD,Rosenzweig ER, Murali-Krishna K, Clark EA, Kotur MS, Fornek JL, Proll S,Pa-lermo RE, Sabourin CL, Katze MG: Early and sustained innate immune re-sponse defines pathology and death in nonhuman primates infected by highly patho¬genic influenza virus. Proc Natl Acad Sci U S A 2009;106: 3455–3460. 44. Rothberg MB, Haessler SD. Complications of seasonal and pandemic influ-enza. Crit Care Med 2009; 38: e91–e97 . 45. Korteweg C, Gu J: Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am J Pathol 2008;172: 1155–1170. 46. Human infection with new influenza A (H1N1) virus: clinical observations from Mexico and other affected countries, 2009.Wkly Epidemiol Rec 2009; 84: 185-189 47. Shieh WJ, Blau DM, Denison AM, et al. Pandemic influenza A (H1N1): pathol-ogy and pathogenesis of 100 fatal cases in the U.S. Am J Pathol (in press). 48. Delaney JW, Fowler RA. 2009 influenza A (H1N1): a clinical review. Hosp Pract (Minneap). 2010; 38(2): 74-81. 49. Benjamin G. Hale,Richard E. Randall,Juan Ortı’n and David Jackson. The multifunctional NS1 protein of influenza A viruses. Journal of General Virol 2008; 89: 2359–2376 50. Egorov A, Brandt S, Sereinig S, Romanova J, Ferko B, Katinger D, Grassauer A, Alexandrova G, Katinger H & Muster T. Transfectant in¬fluenza A viruses with long deletions in the NS1 protein grow efficiently in Vero cells. J Virol 1998; 72 : 6437–6441. 51. Garcia-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P & Muster T.. Influenza A virus lacking the NS1 gene repli¬cates in interferon-deficient systems. Virol 1998; 125: 324–330. 52. Kochs G, Koerner I, Thiel L, Kothlow S, Kaspers B, Ruggli N, Summer¬field A, Pavlovic J, Stech J & Staeheli P. Properties of H7N7 influenza A virus strain SC35M lacking interferon antagonist NS1 in mice and chickens. J Gen Virol 2007; 88 : 1403–1409. 53. Hatada E & Fukuda R. Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol 1992; 73 : 3325-3329. 54. Qian XY, Chien CY, Lu Y, Montelione GT & Krug RM. An amino-terminal polypeptide fragment of the influenza virus NS1 protein pos¬sesses specific RNA-binding activity and largely helical backbone structure. RNA 1995; 1 : 948-956. 55. Yin C, Khan JA, Swapna GV, Ertekin A, Krug RM, Tong L & Montelione GT. Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B vi¬ruses. J Biol Chem 2007; 282: 20584-20592. 56. Chien CY, Xu Y, Xiao R, Aramini JM, Sahasrabudhe PV, Krug RM & Montelion GT. Biophysical characterization of the complex be¬tween double-stranded RNA and the N-terminal domain of the NS1 protein from influenza A virus: evidence for a novel RNA-binding mode. Biochemistry 2004; 43: 1950-1962. 57. Wang X, Basler CF, Williams BR, Silverman RH, Palese P & Gar¬cia-Sastre A. Functional replacement of the carboxy-terminal two-thirds of the influenza A virus NS1 protein with short heterologous dimeriza¬tion domains. J Virol 2002; 76: 12951–12962. 58. Donelan NR, Basler CF & Garcia-Sastre A. A recombinant influ¬enza A virus expressing an RNA-binding-defective NS1 protein induces high lev¬els of beta interferon and is attenuated in mice. J Virol 2003; 77: 13257–13266. 59. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y & Chen H. A single-amino-acid substitution in the NS1 pro¬tein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 2008; 82: 1146–1154. 60. Wang X, Li M, Zheng H, Muster T, Palese P, Beg AA, Garcia-Sastre A. Influ-enza A virus NS1 protein prevents activation of NF-kappaB and induction of al¬pha/beta interferon. J Virol 2000; 74 (24): 11566-73. 61. Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, Garcia-Sastre A. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol 2000; 74 (17): 7989-96. 62. Lu Y, Wambach M, Katze MG, Krug RM. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. J Virol 1995; 214 (1): 222-8. 63. Hatada E, Saito S, Fukuda R. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol 1999, 73 (3): 2425-33. 64. Bergmann M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster T. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 2000; 74(13): 6203-6. 65. Lin D, Lan J, Zhang Z. Structure and function of the NS1 protein of influenza A virus. Acta Biochim Biophys Sin (Shanghai). 2007 ; 39(3): 155-62. 66. Morag Graham, Binhua Liang, Gary Van Domselaar, Nathalie Bastien, Carole Beaudoin, Shaun Tyler, Brynn Kaplen, Erika Landry,the National Influenza A/H1N1pdm Genomics Study Team (NIGST), Yan Li. Nationwide Molecular Surveillance of Pandemic H1N1 Influenza A Vi¬rus Genomes: Canada, 2009. 2011 ; 6(1): e16087. 67. Wang W, Riedel K, Lynch P, Chien CY, Montelione GT, Krug RM. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimerstructure and a small number of specific basic amino acids. RNA. 1999; 5(2): 195-205. 68. Noah DL, Twu KY, Krug RM. Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3' end processing of cellular pre-mRNAS. Virol 2003 ; 307(2): 386-95. 69. Pan C, Cheung B, Tan S, Li C, Li L, Liu S, Jiang S. Genomic signature and mutation trend analysis of pandemic (H1N1) 2009 influenza A virus. PLoS One. 2010; 5(3): e9549. 70. Satoshi Fukuyama1 and Yoshihiro Kawaoka. The pathogenesis of influenza vi-rus infections: the contributions of virus and host factors. Immunology 2011; 23: 481–486. 71. Murakami S, Horimoto T, Mai le Q, Nidom CA, Chen H, Muramoto Y, Yamada S, Iwasa A, Iwatsuki-Horimoto K, Shimojima M, Iwata A, Kawaoka Y. Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells. J Virol 2008; 82(21): 10502-9. 72. Min JY, Li S, Sen GC, Krug RM. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virol 2007 ; 363(1): 236-43. 73. 行政院衛生署疾病管制局全球資訊網。http://www.cdc.gov.tw/mp1.htm 74. Kao CL, Chan TC, Tsai CH, Chu KY, Chuang SF, Lee CC, Li ZR, Wu KW, Chang LY, Shen YH, Huang LM, Lee PI, Yang C, Compans R, Rouse BT, King CC. Emerged HA and NA mutants of the pandemic influenza H1N1 viruses with increasing epidemiological significance in Taipei and Kaohsiung, Taiwan, 2009-10. PLoS One. 2012; 7(2): e31162. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65250 | - |
| dc.description.abstract | 流行性感冒病毒屬於正黏液病毒科,具有套膜且含有八條單股RNA,可以轉譯出11種病毒蛋白質。流行性感冒病毒分為A、B、C三型,其中A型流感病毒的抗原較B型易發生突變,所以A型較B型更容易引起流行。每年台灣冬季11月到3月都有小規模流行,約每十年有一次大規模的流行。
根據行政院衛生署疾病管制局統計資料顯示,2009年全球流行的H1N1病毒(2009 pandemic H1N1)在台灣引起兩波大規模的流行,分別是2009年的第31週到2010年的第5週,和2010年第48週到2011年的第10週。這兩波流行的2009 pandemic H1N1病毒是否具有相異之處,是值得探討之課題。 2009 pandemic H1N1病毒在血球凝集素(Hemagglurinin; HA)和神經胺酸酶(Neuraminidase; NA) 之變化已有許多文獻發表;但第八片段NS(nonstructural)基因,則很少分析。由於NS基因可以轉譯出兩個非結構性蛋白質,NS1與NS2。其中NS1為一非結構性蛋白質,與病毒的複製和抑制宿主干擾素反應有關。於是,探討這兩波在台灣廣為流行的流感病毒其NS1基因序列是否有所差異,為本研究主要目標。 共有57株完成了NS基因全長序列之定序,2009年總計15株、2010年總計6株、2011年總計36株。 由定序結果發現2009 pandemic H1N1流感病毒可依NS1序列的不同分為四種基因型,分別為NS1 55E 123I、55E 123V、55Q 123V和55Q 123A,其中包含55及123位點之single mutation和co-mutation的型別。接著就對病毒single mutation和co-mutation的生長情形做觀察,發現在感染24小時後,co-mutation QA的病毒量會小於EV,single mutation EV會和EI差不多,而single mutation QV會小於EV。 進一步分析不同基因型誘發IFN-β mRNA的量發現,在感染24小時後, co-mutation QA誘發IFN-β mRNA的量會大於EI,single mutationEV誘發IFN-β mRNA的量會和EI差不多,而single mutation QV會大於EV。綜合以上的實驗結果可知,若病毒的NS1 55和123位點突變成QA和QV時,病毒的毒力會下降;而在EI和EV這兩株病毒則無太大的差異。 由實驗結果可以得知,NS1 55Q 123A的流行性感冒病毒,會產生大量的IFN-β,而且病毒量也有大幅度的下降,可能為病毒毒力減弱的影響,至於更精確的機制,可能需要更多的研究來探討。 | zh_TW |
| dc.description.abstract | Influenza A virus belongs to the family of Orthomyxoviridae. It is an enveloped virus with eight segment negative sense, single-stranded RNA. These eight segments of encode for the 11 viral proteins. Three types A, B and C of influenza viruses were identified. Seasonal influenza epidemics occurre in winter between Nov and Mar every year in Taiwan.
According to the report from Taiwan Centers for Disease Control, pandemic H1N1 induced two large-scale epidemic waves in Taiwan. One was at week 31 of 2009 to week 5 of 2010 and the other was week 48 of 2010 to week 10 of 2011. In order to analyze the variation between viruses of the two large-scale epidemic waves, virus strains isolated at National Taiwan University Hosptial during 2009-2011 were collected for study. Because the variations in hemagglurinin and neuraminidase were studied extensively, the NS gene was chosen in this study. The sequence variation of NS1 gene between the viruses of the two large-scale epidemic waves in Taiwan was explored. NS gene can encode two non-structural proteins, NS1 and NS2. NS1 is one of the non-structural protein and is critical for viral replication and inhibition of host induced interferon response. The whole NS genes of 57 strains were sequenced. 15 strains isolated from 2009, 6 strains isolated from 2010, 36 strains isolated from 2011. Based on the NS1 gene sequence analysis, influenza virus can be divided into four genotypes, NS1-55E/123I、55E/123V、55Q/123V and 55Q/ 123A. In order to know the growth characteristics of these four genotypes, their growth activity in MDCK cell were compared. The viral load of co-mutation, QA, was lower than EV at the hour post infection. The single mutation, EV and EI exhibit comparable growth ability in MDCK. Neverthelss, the single mutation, QV had showen the growth activity than EV at 24 hour post infection. For cytokine analysis, the expression level of IFN-beta mRNA upon infection of the co-mutation, 55Q/123A virus wes greater than the co-mutation, 55E/123I at 24 hour post infection. Whereas, no significant difference of the IFN-beta mRNA was found between the virus with single mutation at 55E/123V and 55E/123I. In contrast, the IFN-beta mRNA level was higher in the single mutation, 55Q/123V virus than 55E/123V virus. It suggestes that viruses with NS1 55 and 123 site mutate into QA and QV are related with a decrease of viral virulence. The real mechanism of decrease of viral virulence needs further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:32:47Z (GMT). No. of bitstreams: 1 ntu-101-R99424009-1.pdf: 5579684 bytes, checksum: 95a65a1a34f20d182c194873599dc8d4 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
誌謝………………………………………………………………………………i 中文摘要…………………………………………………………………………ii 英文摘要…………………………………………………………………………iv 目錄……………………………………………………………………………………vi 圖目錄…………………………………………………………………………………ix 表目錄…………………………………………………………………………………xi 第一章 緒論……………………………………………………………………...1 第一節 流感病毒簡介……………………………………………………1 第二節 地理及季節分布…………………………………………………….1 第三節 A型流感病毒的基因結構及病毒蛋白…………………………1 一、聚合酶蛋白(Polymerase proteins)………………………………1 二、核蛋白( Nucleoprotein)………………………………………….2 三、血球凝集素(Hemagglurinin; HA)及其基因…………………….2 四、神經胺酸酶(Neuraminidase; NA)及其基因……………………2 五、M1及M2蛋白…………………………………………………3 六、NS1及NS2蛋白(Non-structure protein)………………………..3 第四節 流感病毒的複製………………………………………………………….4 第五節 流感病毒的抗原轉變…………………………………………………….4 第六節 流感病毒的致病作用…………………………………………………….6 第七節 流感病毒的NS1蛋白功能……………………………………………7 第八節 研究目的………………………………………………………………7 第二章 材料與方法…………………………………………………………………..9 第一節 實驗材料………………………………………………………………..9 一、試劑、試藥………………………………………………………………..9 二、商用套組………………………………………………………………..9 三、細胞株………………………………………………………………..10 四、病毒株………………………………………………………………..10 第二節、實驗方法………………………………………………………………..10 一、試劑之製備……………………………………………………………..10 二、細胞培養………………………………………………………………..12 三、病毒培養………………………………………………………………..12 四、測定病毒力價:溶斑試驗 ( Plaque assay ) ……………………………13 五、病毒核酸抽取……………………………………………………………14 六、反轉錄-聚合酶鍊連鎖反應(RT-PCR) …………………………………14 七、PCR產物純化……………………………………………………………15 八、PCR產物送定序…………………………………………………………15 九、定序後分析……………………………………………………………….16 十、時程實驗………………………………………………………………..16 十一、反轉錄即時定量聚合酶連鎖反應(qRT-PCR)……………………16 十二、即時定量聚合酶連鎖反應之標準品製備…………………………..17 十三、RNA萃取(TRIZOL法) ………………………………………………20 十四、即時定量聚合酶連鎖反應之標準品製備(IFN-β)………………20 第三章 實驗結果……………………………..……………………………………….22 第一節 2009-2011年台灣pandemic A/H1N1流行性感冒病毒NS1基因的分析. 一、基因型分析……………………………………………………………22 二、選用檢體與疾管局資料比對………………………………………..22 三、病毒NS1基因序列分析……………………………………………..23 1. 病毒NS1 N-terminal RNA-binding domain序列之比較………23 2. 病毒NS1 C-terminal effector domain序列之比較………………23 四、 病毒NS1基因co-mutation的發現………………………………….24 五、 演化樹分析…………………………………………………………25 六、 NS1四種基因型的數量、性別、年齡、周數統計分析……………25 七、 病毒序列差異與疾病嚴重程度之關係……………………………26 第二節 流行性感冒病毒NS1基因突變影響生長趨勢分析………………….26 一、NS1的55和123位點發生co-mutation (55E 123V和55Q 123A)時對生 長的比較……………………………………………………………….26 二、NS1的55位點發生single mutation(55E和55Q)時對生長的比較…....27 三、NS1的123位點發生single mutation(123V和123I)時對生長的比較…27 第三節 流行性感冒病毒NS1基因co-mutation引響細胞激素(cytokine)分析..27 一、NS1的55和123位點發生co-mutation (55E 123V和55Q 123A)時對生 長的比較……………………………………………………………….27 二、NS1的55位點發生single mutation(55E和55Q)時對生長的比較…..28 三、NS1的123位點發生single mutation(123V和123I)時對生長的比較…28 第四章 討論………………………………………………………………………….30 第一節 病毒之單基因位點分析………………………………………………30 一、流行性感冒病毒NS1基因第55位點……………………………………30 二、流行性感冒病毒NS1基因第123位點…………………………………31 第二節 病毒之雙基因位點分析………………………………………………31 一、流行性感冒病毒NS1基因55Q 123A……………………………………31 二、流行性感冒病毒NS1基因55E 123V……………………………………32 三、流行性感冒病毒NS1基因55Q 123V……………………………………32 第三節 病毒序列差異與時間、空間之關係…………………………………32 一、流行性感冒病毒主流株基因序列差異的時序性討論……………….32 二、流行性感冒病毒co-mutation與時間、空間之關係………………….33 第四節 病毒序列差異與疾病嚴重程度之關係……………………………….34 第五節 預測病毒未來的走向………………………………………………….35 圖目錄 FIGURE 1. Identification and subtyping of 2009 pandemic H1N1 influenza viruses…………………………………………………………………37 FIGURE 2. Gender distribution of 2009 pandemic H1N1 influenza viruses isolated at NTUH…………………………………………………………………38 FIGURE 3. Age distribution of 2009 pandemic influenza viruses used for study. ….38 FIGURE 4. Week distribution of 2009 pandemic H1N1 influenza viruses iso¬lated in Taipei, 2009-2011…………………………………………………….39 FIGURE 5. Agarose gel electrophoresis of one-step RT-PCR amplified NS1 gene of 2009 pandemic H1N1 influenza viruses. ……………………………40 FIGURE 6. The hot spot variations of amino acid residues of NS1 RNA binding domain of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009-2011. ……………………………………………………….41 FIGURE 7. The hot spot variations of amino acid residues of NS1 effector domain of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009-2011……………………………………………………….42 FIGURE 8. The co-mutations of amino acid in NS1 genetic coding region of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009-2011……43 FIGURE 9. Phylogenetic analysis of the NS nucleotide coding region of influ¬enza viruses. ………………………………………………………………..44 FIGURE 10. Four genotype distribution of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009-2011. ………………………………………..45 FIGURE 11. Gender distribution of four genotype of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009-2011. ………………………………45 FIGURE 12. Age distribution of four genotypes four genotype of 2009 pandemic H1N1 influenza viruses iso¬lated at NTUH, 2009-2011………………46 FIGURE 13. Week distribution of NS1 four genotypes in Taipei, 2009-2011. ……46 FIGURE 14. Effects of NS1 55 and 123 site co-mutation on influenza virus growth in MDCK cells. ……………………………………………………….47 FIGURE 15. Effects of NS1 55 and 123 site mutation on influenza virus growth in MDCK cells. ……………………………………………………….49 FIGURE 16. Effects of NS1 55 site mutation on influenza virus growth in MDCK cells. ………………………………………………………………….51 FIGURE 17. Effects of NS1 55 and 123 site mutation on MDCK IFN-β mRNA expres¬sion. …………………………………………………………….53 FIGURE 18. Effects of NS1 55 and 123 site mutation on influenza virus growth in MDCK cells. …………………………………………………………..55 FIGURE 19. Effects of NS1 55 and 123 site mutation on MDCK IFN-β mRNA expres¬sion. ……………………………………………………………..56 FIGURE 20. Spatial analysis of the co-mutation laboratory-confirmed 2009 pan¬demic H1N1 influenza cases. …………………………………………………56 FIGURE 21. Temporal distributions of 2009 pandemic H1N1 influenza vi¬ruses NS1 55 and 123 site, and HA 374 mutants in Taiwan, 2009-2011. ………57 表目錄 TABLE 1 Oligonucleotides used to amplify and sequence A/H1N1pdm viruses in this study. …………………………………………………………………..58 TABLE 2 Pandemic H1N1 influenza virus isolates used in this study………………58 TABLE 3 The numbers of sequence variants in of 2009 pan¬demic H1N1 influenza viruses isolated at NTUH, 2009-2011…………………………………….59 TABLE 4 The co-mutations of amino acid residues of NS1 of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2009………………………………60 TABLE 5 The co-mutations of amino acid residues of NS1 of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2010………………………………..61 TABLE 6 The co-mutations of amino acid residues of NS1 of 2009 pandemic H1N1 influenza viruses isolated at NTUH, 2011………………………………62 TABLE 7 Comparison of NS1 55 site mutation with disease severity………………63 TABLE 8 Comparison of NS1 123 site mutation with disease severity……………63 TABLE 9 Spatial analysis of the co-mutation laboratory-confirmed 2009 pan¬demic H1N1 influenza cases……………………………………………………64 TABLE 10 Co-mutation of NS genes with E374/E/K/G mutation…………………64 參考文獻……………………………………………………………………………..65 | |
| dc.language.iso | zh-TW | |
| dc.subject | 新型流行性感冒病毒 | zh_TW |
| dc.subject | 非結構蛋白質 | zh_TW |
| dc.subject | A/H1N1 | en |
| dc.subject | NS1 | en |
| dc.title | 台灣地區2009-2011年新型流行性感冒病毒(A/H1N1)非結構蛋白質(NS1)之基因變化 | zh_TW |
| dc.title | Genetic Variation in Non-structural Protein 1 of Pandemic Influenza A/H1N1 Virus in Taiwan, 2009-2011 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張淑媛,李君男 | |
| dc.subject.keyword | 新型流行性感冒病毒,非結構蛋白質, | zh_TW |
| dc.subject.keyword | A/H1N1,NS1, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
