Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65241
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙(Hsiu-Hsi Chen)
dc.contributor.authorJiun-Shiou Leeen
dc.contributor.author李俊秀zh_TW
dc.date.accessioned2021-06-16T23:32:12Z-
dc.date.available2020-07-27
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation參考文獻
1. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 2000;17(1):1-45.
2. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993;94(6):646-50.
3. Hsin-Dai Lee C-TS, Mau-Roung Lin. Preventive Screening of Osteoporosis Fracture. Taiwan Geriatric & Gerontology 2008;3(2):14.
4. Liu HC. Accuracy of Ultrasound-Based Bone Mass Density(BMD) for Classification and Yield of Osteoporosis-Evaluation by Recevicer Operating Characteristic(ROC) method. National Taiwan University, 2010.
5. Bates DW, Black DM, Cummings SR. Clinical use of bone densitometry: clinical applications. JAMA 2002;288(15):1898-900.
6. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA 2002;288(15):1889-97.
7. 潘文涵 林邱林. 老年人骨質健康狀況. 老人營養現況(台灣地區老人營養健康狀況調查1999-2000調查結果);行政院衛生署 2004.
8. Lin JD, Chen JF, Chang HY, Ho C. Evaluation of bone mineral density by quantitative ultrasound of bone in 16,862 subjects during routine health examination. Br J Radiol 2001;74(883):602-6.
9. Lin YC, Pan WH. Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia Pacific journal of clinical nutrition 2011;20(2):283-91.
10. Riggs BL, Melton LJ, 3rd. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 1995;17(5 Suppl):505S-11S.
11. Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L, et al. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ 2009;181(5):265-71.
12. Poole KE, Compston JE. Osteoporosis and its management. BMJ 2006;333(7581):1251-6.
13. Adachi JD, Adami S, Gehlbach S, Anderson FA, Jr., Boonen S, Chapurlat RD, et al. Impact of prevalent fractures on quality of life: baseline results from the global longitudinal study of osteoporosis in women. Mayo Clin Proc 2010;85(9):806-13.
14. Chie WC, Yang RS, Liu JP, Tsai KS. High incidence rate of hip fracture in Taiwan: estimated from a nationwide health insurance database. Osteoporos Int 2004;15(12):998-1002.
15. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 2006;17(12):1726-33.
16. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int 1997;7(5):407-13.
17. Orimo H, Yaegashi Y, Onoda T, Fukushima Y, Hosoi T, Sakata K. Hip fracture incidence in Japan: estimates of new patients in 2007 and 20-year trends. Arch Osteoporos 2009;4(1-2):71-77.
18. Rogmark C, Sernbo I, Johnell O, Nilsson JA. Incidence of hip fractures in Malmo, Sweden, 1992-1995. A trend-break. Acta Orthop Scand 1999;70(1):19-22.
19. Jaglal SB, Weller I, Mamdani M, Hawker G, Kreder H, Jaakkimainen L, et al. Population trends in BMD testing, treatment, and hip and wrist fracture rates: are the hip fracture projections wrong? J Bone Miner Res 2005;20(6):898-905.
20. Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M. Nationwide decline in incidence of hip fracture. J Bone Miner Res 2006;21(12):1836-8.
21. Nymark T, Lauritsen JM, Ovesen O, Rock ND, Jeune B. Short time-frame from first to second hip fracture in the Funen County Hip Fracture Study. Osteoporos Int 2006;17(9):1353-7.
22. Leslie WD, O'Donnell S, Jean S, Lagace C, Walsh P, Bancej C, et al. Trends in hip fracture rates in Canada. JAMA 2009;302(8):883-9.
23. Chen TH, Chiu YH, Luh DL, Yen MF, Wu HM, Chen LS, et al. Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer 2004;100(8):1734-43.
24. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet 2002;359(9319):1761-7.
25. Karunanayake AL, Pinidiyapathirage MJ, Wickremasinghe AR. Prevalence and predictors of osteoporosis in an urban Sri Lankan population. Int J Rheum Dis 2010;13(4):385-90.
26. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG. Predictors of bone mineral density and osteoporosis in patients attending a rheumatology outpatient clinic. Rheumatol Int 2003;23(2):67-9.
27. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int 2005;16(6):581-9.
28. Hui SL, Slemenda CW, Johnston CC, Jr. Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 1988;81(6):1804-9.
29. Center NOaRBDNR. Osteoporosis: Handout on health. http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/osteoporosis_hoh.asp. Oct. 25, 2011. ed. NIH Osteoporosis and Related Bone Diseases National Resource Center. http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/osteoporosis_hoh.asp., 2011.
30. Staff MC. Risk Factors of Osteoporosis. http://www.mayoclinic.com/health/osteoporosis/DS00128/DSECTION=risk-factors, Dec. 13, 2011.
31. Mazziotti G, Giustina A, Canalis E, Bilezikian JP. Glucocorticoid-induced osteoporosis: clinical and therapeutic aspects. Arquivos brasileiros de endocrinologia e metabologia 2007;51(8):1404-12.
32. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int 2007;18(10):1319-28.
33. Manolagas SC, Weinstein RS. New developments in the pathogenesis and treatment of steroid-induced osteoporosis. J Bone Miner Res 1999;14(7):1061-6.
34. Kanis JA, Johansson H, Oden A, McCloskey EV. Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 2011;22(3):809-16.
35. Van Staa TP, Leufkens HG, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res 2000;15(6):993-1000.
36. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 2002;13(10):777-87.
37. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone 2004;35(2):375-82.
38. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int 2005;16(2):155-62.
39. Papaioannou A, Kennedy CC, Cranney A, Hawker G, Brown JP, Kaiser SM, et al. Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int 2009;20(4):507-18.
40. Kanis JA, Johansson H, Johnell O, Oden A, De Laet C, Eisman JA, et al. Alcohol intake as a risk factor for fracture. Osteoporos Int 2005;16(7):737-42.
41. C. Laet JAK, A. Oden, H. Johanson and O. Johnell, et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporosis International 2005;16(11):1330-38.
42. Kanis J, Borgstrom, F, De Laet. C, et al. . Assessment of fracture risk. Osteoporosis International 2005;16:581.
43. Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 2007;297(4):387-94.
44. Cauley JA, Hochberg MC, Lui LY, Palermo L, Ensrud KE, Hillier TA, et al. Long-term risk of incident vertebral fractures. JAMA 2007;298(23):2761-7.
45. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA, et al. A family history of fracture and fracture risk: a meta-analysis. Bone 2004;35(5):1029-37.
46. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1995;332(12):767-73.
47. Johansson H, Oden A, Johnell O, Jonsson B, de Laet C, Oglesby A, et al. Optimization of BMD measurements to identify high risk groups for treatment--a test analysis. J Bone Miner Res 2004;19(6):906-13.
48. Johnell O KJ, Black DM, et al. Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 2004;19:764.
49. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 2007;18(8):1033-46.
50. Lydick E CK, Turpin J, et al. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care 1998;4:37.
51. Cadarette SM JS, Kreiger N, et al. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ 2000;162:1289.
52. Cadarette SM, Jaglal SB, Murray TM, McIsaac WJ, Joseph L, Brown JP. Evaluation of decision rules for referring women for bone densitometry by dual-energy x-ray absorptiometry. JAMA 2001;286(1):57-63.
53. Mauck KF, Cuddihy MT, Atkinson EJ, Melton LJ, 3rd. Use of clinical prediction rules in detecting osteoporosis in a population-based sample of postmenopausal women. Arch Intern Med 2005;165(5):530-6.
54. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008;19(4):385-97.
55. Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A. The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 2001;12(5):417-27.
56. Ensrud KE, Lui LY, Taylor BC, Schousboe JT, Donaldson MG, Fink HA, et al. A comparison of prediction models for fractures in older women: is more better? Arch Intern Med 2009;169(22):2087-94.
57. Hippisley-Cox J, Coupland C. Predicting risk of osteoporotic fracture in men and women in England and Wales: prospective derivation and validation of QFractureScores. BMJ 2009;339:b4229.
58. Bettica P, Taylor AK, Talbot J, Moro L, Talamini R, Baylink DJ. Clinical performances of galactosyl hydroxylysine, pyridinoline, and deoxypyridinoline in postmenopausal osteoporosis. J Clin Endocrinol Metab 1996;81(2):542-6.
59. McLaren AM, Hordon LD, Bird HA, Robins SP. Urinary excretion of pyridinium crosslinks of collagen in patients with osteoporosis and the effects of bone fracture. Ann Rheum Dis 1992;51(5):648-51.
60. Seibel MJ, Woitge H, Scheidt-Nave C, Leidig-Bruckner G, Duncan A, Nicol P, et al. Urinary hydroxypyridinium crosslinks of collagen in population-based screening for overt vertebral osteoporosis: results of a pilot study. J Bone Miner Res 1994;9(9):1433-40.
61. Seibel MJ CF, Shen V, et al. . Urinary hydroxypyridinium crosslinks of collagen as markers of bone resorption and estrogen efficacy in postmenopausal osteoporosis. J Bone Miner Res 1993;8:881.
62. Bahlous A, Kalai E, Hadj Salah M, Bouzid K, Zerelli L. [Biochemical markers of bone remodeling: recent data of their applications in managing postmenopausal osteoporosis]. Tunis Med 2006;84(11):751-7.
63. Bauer DC, Sklarin PM, Stone KL, Black DM, Nevitt MC, Ensrud KE, et al. Biochemical markers of bone turnover and prediction of hip bone loss in older women: the study of osteoporotic fractures. J Bone Miner Res 1999;14(8):1404-10.
64. Christiansen C, Riis BJ, Rodbro P. Prediction of rapid bone loss in postmenopausal women. Lancet 1987;1(8542):1105-8.
65. Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ 1991;303(6808):961-4.
66. Raisz LG. Clinical practice. Screening for osteoporosis. N Engl J Med 2005;353(2):164-71.
67. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 2003;18(11):1947-54.
68. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res 2005;20(7):1185-94.
69. Leslie WD, Tsang JF, Caetano PA, Lix LM, Manitoba Bone Density P. Effectiveness of bone density measurement for predicting osteoporotic fractures in clinical practice. J Clin Endocrinol Metab 2007;92(1):77-81.
70. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 1992;7(6):633-8.
71. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 1993;341(8837):72-5.
72. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996;312(7041):1254-9.
73. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet 2002;359(9321):1929-36.
74. Picard D, Brown JP, Rosenthall L, Couturier M, Levesque J, Dumont M, et al. Ability of peripheral DXA measurement to diagnose osteoporosis as assessed by central DXA measurement. J Clin Densitom 2004;7(1):111-8.
75. Kung AW, Lee KK, Ho AY, Tang G, Luk KD. Ten-year risk of osteoporotic fractures in postmenopausal Chinese women according to clinical risk factors and BMD T-scores: a prospective study. J Bone Miner Res 2007;22(7):1080-7.
76. Cunningham GF. Screening for osteoporosis. N Engl J Med 2005;353(18):1975; author reply 75.
77. Haller J, Andre MP, Resnick D, Miller C, Howard BA, Mitchell MJ, et al. Detection of thoracolumbar vertebral body destruction with lateral spine radiography. Part II: Clinical investigation with computed tomography. Invest Radiol 1990;25(5):523-32.
78. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 1996;11(6):707-30.
79. Nayak S, Olkin I, Liu H, Grabe M, Gould MK, Allen IE, et al. Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 2006;144(11):832-41.
80. Jorgensen HL, Warming L, Bjarnason NH, Andersen PB, Hassager C. How does quantitative ultrasound compare to dual X-ray absorptiometry at various skeletal sites in relation to the WHO diagnosis categories? Clin Physiol 2001;21(1):51-9.
81. Hodson J, Marsh J. Quantitative ultrasound and risk factor enquiry as predictors of postmenopausal osteoporosis: comparative study in primary care. BMJ 2003;326(7401):1250-1.
82. Boonen S, Nijs J, Borghs H, Peeters H, Vanderschueren D, Luyten FP. Identifying postmenopausal women with osteoporosis by calcaneal ultrasound, metacarpal digital X-ray radiogrammetry and phalangeal radiographic absorptiometry: a comparative study. Osteoporos Int 2005;16(1):93-100.
83. Trimpou P, Bosaeus I, Bengtsson BA, Landin-Wilhelmsen K. High correlation between quantitative ultrasound and DXA during 7 years of follow-up. European journal of radiology 2010;73(2):360-4.
84. Arana-Arri E, Gutierrez Ibarluzea I, Ecenarro Mugaguren A, Asua Batarrita J. [Predictive value of ultra-sound densitometry as a method of selective screening for osteoporosis in primary care]. Atencion primaria / Sociedad Espanola de Medicina de Familia y Comunitaria 2007;39(12):655-9.
85. Gudmundsdottir SL, Indridason OS, Franzson L, Sigurdsson G. Age-related decline in bone mass measured by dual-energy X-ray absorptiometry and quantitative ultrasound in a population-based sample of both sexes: identification of useful ultrasound thresholds for osteoporosis screening. J Clin Densitom 2005;8(1):80-6.
86. Pearson D, Masud T, Sahota O, Earnshaw S, Hosking D. A comparison of calcaneal dual-energy X-ray absorptiometry and calcaneal ultrasound for predicting the diagnosis of osteoporosis from hip and spine bone densitometry. J Clin Densitom 2003;6(4):345-52.
87. Ikeda Y, Iki M, Morita A, Aihara H, Kagamimori S, Kagawa Y, et al. Age-specific values and cutoff levels for the diagnosis of osteoporosis in quantitative ultrasound measurements at the calcaneus with SAHARA in healthy Japanese women: Japanese population-based osteoporosis (JPOS) study. Calcif Tissue Int 2002;71(1):1-9.
88. Diez-Perez A, Marin F, Vila J, Abizanda M, Cervera A, Carbonell C, et al. Evaluation of calcaneal quantitative ultrasound in a primary care setting as a screening tool for osteoporosis in postmenopausal women. J Clin Densitom 2003;6(3):237-45.
89. Varney LF, Parker RA, Vincelette A, Greenspan SL. Classification of osteoporosis and osteopenia in postmenopausal women is dependent on site-specific analysis. J Clin Densitom 1999;2(3):275-83.
90. Marin F, Lopez-Bastida J, Diez-Perez A, Sacristan JA. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in postmenopausal women from the general population: a cost-effectiveness analysis. Calcif Tissue Int 2004;74(3):277-83.
91. Bouxsein M, Parker, RA, Greenspan, SL. . Forearm bone mineral densitometry cannot be used to monitor improvements in hip and spine bone density after 2.5 years of alendronate therapy. . Bone 1998;23:S312.
92. Bauer DC, Gluer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997;157(6):629-34.
93. Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004;363(9404):197-202.
94. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 2001;286(22):2815-22.
95. Blake GM, Fogelman I. Peripheral or central densitometry: does it matter which technique we use? J Clin Densitom 2001;4(2):83-96.
96. Eastell R, Wahner HW, O'Fallon WM, Amadio PC, Melton LJ, 3rd, Riggs BL. Unequal decrease in bone density of lumbar spine and ultradistal radius in Colles' and vertebral fracture syndromes. J Clin Invest 1989;83(1):168-74.
97. Melton LJ, 3rd, Atkinson EJ, O'Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993;8(10):1227-33.
98. Cummings SR, Black D. Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 1995;98(2A):24S-28S.
99. Davis JW RP, Wasnich RD. Evidence for both generalized and regional low bone mass among elderly women. J Bone Miner Res 1994;9:305.
100. Kanis JA JO, Oden A, et al. The use of multiple sites for the diagnosis of osteoporosis. Osteoporos Int 2006;17:527.
101. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008;19(4):399-428.
102. Kanis JA JO. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 2005;16:229.
103. The National Osteoporosis Foundation Clinician's Guide to Prevention and Treatment of Osteoporosis. . http://www.nof.org/professionals/NOF_Clinicians_Guide.htm (Accessed April 28, 2008). 2008.
104. Baim S, Leonard MB, Bianchi ML, Hans DB, Kalkwarf HJ, Langman CB, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom 2008;11(1):6-21.
105. Rossignol M, Moride Y, Perreault S, Boivin JF, Ste-Marie LG, Robitaille Y, et al. Recommendations for the prevention of osteoporosis and fragility fractures. International comparison and synthesis. Int J Technol Assess Health Care 2002;18(3):597-610.
106. www.aace.com. OsteoGuidelines2010. www.aace.com 2011.
107. www.uspreventiveservicestaskforce.org. http://www.uspreventiveservicestaskforce.org/uspstf10/osteoporosis/osteors.htm. 2011.
108. Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 2010;182(17):1864-73.
109. Screening for osteoporosis: recommendation statement. Am Fam Physician 2011;83(10):1197-200.
110. Leslie WD, Schousboe JT. A review of osteoporosis diagnosis and treatment options in new and recently updated guidelines on case finding around the world. Curr Osteoporos Rep 2011;9(3):129-40.
111. Force USPST. Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med 2011;154(5):356-64.
112. Qaseem A, Snow V, Shekelle P, Hopkins R, Jr., Forciea MA, Owens DK. Screening for osteoporosis in men: a clinical practice guideline from the American College of Physicians. Ann Intern Med 2008;148(9):680-4.
113. Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, et al. Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas 2009;62(2):105-8.
114. Barr RJ, Stewart A, Torgerson DJ, Reid DM. Population screening for osteoporosis risk: a randomised control trial of medication use and fracture risk. Osteoporos Int 2010;21(4):561-8.
115. Nelson HD, Haney EM, Dana T, Bougatsos C, Chou R. Screening for osteoporosis: an update for the U.S. Preventive Services Task Force. Ann Intern Med 2010;153(2):99-111.
116. Yamada M, Ito M, Hayashi K, Ohki M, Nakamura T. Dual energy X-ray absorptiometry of the calcaneus: comparison with other techniques to assess bone density and value in predicting risk of spine fracture. AJR Am J Roentgenol 1994;163(6):1435-40.
117. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 1988;67(4):839-44.
118. Ross PD, Davis JW, Epstein RS, Wasnich RD. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 1991;114(11):919-23.
119. Seeley DG, Browner WS, Nevitt MC, Genant HK, Scott JC, Cummings SR. Which fractures are associated with low appendicular bone mass in elderly women? The Study of Osteoporotic Fractures Research Group. Ann Intern Med 1991;115(11):837-42.
120. Hui SL, Slemenda CW, Johnston CC, Jr. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989;111(5):355-61.
121. Cummings SR, Black DM, Nevitt MC, Browner WS, Cauley JA, Genant HK, et al. Appendicular bone density and age predict hip fracture in women. The Study of Osteoporotic Fractures Research Group. JAMA 1990;263(5):665-8.
122. Greenspan SL, Myers ER, Maitland LA, Resnick NM, Hayes WC. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. JAMA 1994;271(2):128-33.
123. Rubin SM, Cummings SR. Results of bone densitometry affect women's decisions about taking measures to prevent fractures. Ann Intern Med 1992;116(12 Pt 1):990-5.
124. Kanis JA, Seeman E, Johnell O, Rizzoli R, Delmas P. The perspective of the International Osteoporosis Foundation on the official positions of the International Society for Clinical Densitometry. Osteoporos Int 2005;16(5):456-9, discussion 579-80.
125. Hillier TA, Stone KL, Bauer DC, Rizzo JH, Pedula KL, Cauley JA, et al. Evaluating the value of repeat bone mineral density measurement and prediction of fractures in older women: the study of osteoporotic fractures. Arch Intern Med 2007;167(2):155-60.
126. Yang TS, Chen YR, Chen YJ, Chang CY, Ng HT. Osteoporosis: prevalence in Taiwanese women. Osteoporos Int 2004;15(4):345-7.
127. Liu X. Classification accuracy and cut point selection. Stat Med 2012.
128. Chen LS, Yen MF, Wu HM, Liao CS, Liou DM, Kuo HS, et al. Predictive survival model with time-dependent prognostic factors: development of computer-aided SAS Macro program. J Eval Clin Pract 2005;11(2):181-93.
129. Andersen PK. Repeated assessment of risk factors in survival analysis. Statistical methods in medical research 1992;1(3):297-315.
130. Chiu YH, Chen LS, Chan CC, Liou DM, Wu SC, Kuo HS, et al. Health information system for community-based multiple screening in Keelung, Taiwan (Keelung Community-based Integrated Screening No. 3). International journal of medical informatics 2006;75(5):369-83.
131. Chiu SY, Chen LS, Yen AM, Chen HH. Population-based proband-oriented pedigree information system: application to hypertension with population-based screening data (KCIS No. 25). Journal of the American Medical Informatics Association : JAMIA 2012;19(1):102-10.
132. 戴政 江. 生物醫學統計概論. 台灣: 翰蘆圖書出版有限公司, 2006.
133. Moayyeri A, Adams JE, Adler RA, Krieg MA, Hans D, Compston J, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 2012;23(1):143-53.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65241-
dc.description.abstract研究背景
骨質疏鬆症是臨床上常見的疾病,也是骨折最重要的危險因子之一,截至目前為止,很少有社區大規模之資料探討骨質疏鬆症之發生率,而利用定量式超音波骨質密度(QUS)檢測儀進行測量後所得到的骨質密度測量值(BMD)來預測骨質疏鬆症新病例發生之準確性,也很少被探討。
研究目的
利用社區整合式篩檢(1)估計族群之性別及年齡別骨質疏鬆症發生率;(2)探討定量式超音波骨質密度測量值對於骨質疏鬆症預測之準確性、產值及接受者作業曲線(Receiver Operating Curve, ROC)與最適切點之選定;(3)評估在控制其他相關危險因子下,定量式超音波骨質密度基礎值對於骨質疏鬆症發生是否具有劑量-反應效應(dose-response effect);(4)評估使用定量式超音波骨質密度所得到時間相依之重複測量值,對於骨質疏鬆症是否也具有相似之劑量-反應效應(dose-response effect)。
材料與方法
本研究對象為40歲以上參與1999至2004年社區篩檢之一般民眾,共計40916位,男性共有17286人,女性共有23630人,研究設計是一個前瞻性研究世代,去除第一次篩檢(1999年)時已有骨質疏鬆症診斷之個案(盛行個案)後,追蹤正常世代至2004年,骨質疏鬆症之新病例個案。對於主要感興趣之骨質密度自變項,是以整合式篩檢為平台,於民眾參與歷次篩檢時,測量個人之定量式超音波骨質密度測量值,且同時進行生理與生化數值檢測,並以問卷蒐集相關疾病病史及危險因子等資訊。除了評估骨質密度篩檢對於骨質疏鬆症之準確性作業曲線及切點之選擇外,亦使用羅吉斯回歸及時間獨立與時間相依之比例風險模型,評估定量式超音波骨質密度基礎值與重複測量值對於骨質疏鬆症發生之劑量反應效應。
研究結果
骨質疏鬆症發生率為每千人年32.65,男性為每千人年11.17;女性為每千人年49.13,女性約為男性4倍。在骨質密度測量值切點訂為 -2的情況下,定量式超音波骨質密度檢測儀之敏感度為55.69%,特異度為66.00%,作業曲線下面積(AUC)為0.65 (95%CI:0.64-0.66)。定量式超音波骨質密度檢測儀之測量值越大,得到骨質疏鬆症的機會越低,此關係呈現因果關係之劑量-反應效應,也就是骨質密度測量值每增加1單位,骨質疏鬆症確診的勝算比減少12% (OR:0.88, 95%CI:0.84-0.91)。調整其他危險因子之後,若使用時間獨立之模型,每增加1單位骨質密度測量值可降低3% (HR:0.97, 95%CI:0.94-1.01)骨質疏鬆之發生。調整其他危險因子之後,若使用時間相依之模型,每增加1單位骨質密度測量值可降低5% (HR:0.95, 95%CI:0.92-0.99)骨質疏鬆之發生。最後考量骨質密度測量值加上年齡、性別、停經狀態等危險因子後,無論在時間獨立(AUC為0.79, 95%CI:0.79-0.80)或時間相依(AUC為0.78, 95%CI:0.77-0.79)之情形下,其骨質疏鬆發生之預測效度相當好。
結論
本研究確定定量式超音波骨質密度檢測儀之測量值與骨質疏鬆症之新發生病例呈現因果關係之劑量-反應效應。考慮定量式超音波骨質密度測量值與其他危險因子後,可以準確預測骨質疏鬆症之發生。此結論建議定量式超音波可以做為社區族群骨質密度之篩檢,進而早期治療骨質疏鬆以避免骨折之發生。
zh_TW
dc.description.abstractBackground
Osteoporosis is a common disease and is also one of the most important risk factors responsible for fracture. It is very rare to study the incidence of osteoporosis by using the population-based and community-based data. Moreover, the accuracy of predicting of Incident osteoporosis in association with bone mineral density (BMD) and related risk factors also has been barely addressed.
Purpose
By using community-based intergrated screening data, we aimed to (1) estimate the incidence of osteoporosis by age and sex; (2) study the accuracy of predicting incident osteoporosis by using the quantitative ultrasound and the optimal cut off point based on the receiver operating characteristics (ROC) curve; (3) determine if there is a dose-response relationship between the baseline QUS measurement or time-dependent repeated QUS measurements and incident osteoporosis.
Materials and Methods
The study design is based on a prospective community-based cohort study consisting of people who were aged 40 years or over and participated in the community-based intergrated screening between 1999 and 2004. After excluding cases who had been already diagnosed as osteoporosis before the date of first screening date (prevalent cases), a total number of 40916 people (male: 17286, female: 23630) were enrolled. In each round of screening, the QUS measurement, physical, biochemical lab data and questionnares of risk factors of participants were collected. The accuracy of predicting incident osteoporosis by using QUS measurements was assessed by using receiver operating characteristics (ROC) curve. The odds and harzard ratio of QUS measurements and related risk factors were estimated by using logistic regression model and proportional hazards regression model, repectively. The dose-response relationship between incident osteoporosis and baseline QUS measurement or time-dependent repeated QUS measurements was also evaluated with or without adjusting for other significant risk factors.
Results
The incidence of osteoporosis was 32.65 per 1000 person-years and was higher in females (49.13 per 1000 person-years) than males (11.17 per 1000 person-years). The sensitivity of QUS was 55.69%, the specificity is 66.00% and the area under receiver operating curve is 0.65 (95%CI:0.61-0.66) while the cut-off point value was set at -2 pf BMD. As incremental unit of BMD lead to a 12%(OR:0.88 95%CI:0.84-0.91) reduction of incident osteoporosis. Compared with 0-20 percentage group, there was a dose-response relationship between QUS measurement and incident osteoporosis. After adjusting for related risk factors, an increase in one unit of QUS measurement lead to 3% (95%CI of HR:0.94-1.01) and 5% (95%CI of HR:0.92-0.99) of developing incident osteoporosis by using time-independent model and time-dependent model, respectively. By combing QUS measurements with risk factors, such as age, sex and menopause status, the AUC was 0.79 using time-independent model and 0.78 using time dependent model, both of which suggest the adequacy of model accuracy.
Conclusion
The results of this large community-based prospective cohort study provide the strong evidence on a dose-response relationship between QUS measurements and incident osteoporosis. Besides, combing QUS measurements with related risk factors has good accuracy of predicting incident osteoposis. This study suggests that baseline continuous QUS may be used for stratifying the risk of osteoporosis in the underlying population community-based screening so people can have earlier and in-time treatment when necessary.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:32:12Z (GMT). No. of bitstreams: 1
ntu-101-R99849014-1.pdf: 833265 bytes, checksum: a4e3529eaec2d4759807d4a0a3f202bf (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
第一章 前言……………………………………………………………………… 1
第二章 骨質疏鬆症與骨質疏鬆篩檢文獻回顧 ………………………………… 4
一、骨質疏鬆症定義 ……………………………………………………… 4
二、骨質疏鬆症診斷標準 ………………………………………………… 4
三、骨質疏鬆症描述性流行病學 ……………………………………… 5
四、骨質疏鬆症與骨折 ………………………………………………… 6
五、骨質疏鬆症危險因子與骨質疏鬆性骨折之風險 ………………… 7
六、骨質疏鬆性骨折風險評估 …………………………………………… 12
(一)、骨折風險因子評估工具:FRAX ………………………………… 12
(二)、骨質密度檢測 ……………………………………………………… 14
1. 雙能量X光骨質密度儀(dual-energy x-ray absorptiometry, DXA) …… 15
2. 定量電腦斷層檢測(Quantitative computerized tomography, QCT) … 16
七、定量式超音波骨質密度檢測(Quantitative Ultrasound, QUS) …………… 16
八、檢測工具準確度(Measures of accuracy) ………………………………… 25
九、診斷概似函數比(diagnostic likelihood ratios, DLR) ……………………… 26
十、接受者作業曲線(Receiver operating characteristic curve)與曲線下面積… 27
十一、接受者作業曲線之最適切點選擇(Cut point selection) ………………… 29
十二、非時間相依風險函數模型 ……………………………………… 31
十三、時間相依比例風險迴歸模型 ……………………………………… 33
第三章 材料與方法 …………………………………………………………… 38
一、資料來源 …………………………………………………………… 38
(一)、整合式篩檢目標族群 …………………………………………… 38
(二)、研究樣本及設計 ………………………………………………… 38
(三)、骨質密度量測(定量式超音波骨質密度)及骨質疏鬆 ……… 41
(四)、骨質密度超音波檢測(QUS)數值與陽性個案定義 …………… 43
(五)、解釋變項蒐集 ………………………………………………… 44
二、統計分析
(一)、工具準確度及診斷概似函數比 ………………………………… 44
(二)、接受者作業曲線之曲線面積(AUC)與最適切點選擇 …………… 44
(三)、羅吉斯迴歸模型與風險函數模型架構 ……………………… 44
第四章 結果 ……………………………………………………………………… 46
一、描述性結果 …………………………………………………………… 46
二、骨質疏鬆症疾病分類正確率與概似函數 …………………………… 51
三、定量式超音波骨質密度檢測儀之AUC與測量值最適切點選擇 … 51
四、定量式超音波測量準確率之影響因子 …………………………… 53
五、骨質疏鬆症疾病風險函數模型 ……………………………………… 55
六、骨質疏鬆症疾病時間相依風險函數模型 …………………………… 57
七、模式驗證 …………………………………………………………… 58
第五章 討論 ……………………………………………………………………… 60
一、主要發現 …………………………………………………………… 60
二、骨質疏鬆症發生率 ………………………………………………… 60
三、定量式超音波骨質密度檢測儀之準確性 …………………………… 61
四、骨質密度與骨質疏鬆之劑量效應 ………………………………… 61
五、定量式超音波骨質密度檢測與整合式篩檢之重要性 …………… 62
六、骨質疏鬆症與骨折相關未來研究 ………………………………… 63
七、模式預測效度 ……………………………………………………… 64
八、研究限制 …………………………………………………………… 64
第六章 結論 ……………………………………………………………………… 65
參考文獻 ……………………………………………………………………… 78
dc.language.isozh-TW
dc.title骨質密度檢測值與相關危險因子預測骨質疏鬆症發生率zh_TW
dc.titlePrediction of Incident Osteoporosis in Association with Bone Mineral Density and Related Risk Factorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃國晉(Kuo-Chin Huang),鄭尊仁(Tsun-Jen Cheng),陳祈玲(Chi-Ling Chen),邱月暇(Yueh-Hsia Chiu)
dc.subject.keyword骨質疏鬆症發生率,骨質密度,接受者作業曲線,劑量反應效應,zh_TW
dc.subject.keywordIncident Osteoporosis,Bone Mineral Density,Receiver Operating Curve,Dose-Response Effect,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
813.74 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved