Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐源泰
dc.contributor.authorYi-Ting Chiangen
dc.contributor.author江宜庭zh_TW
dc.date.accessioned2021-06-16T23:30:58Z-
dc.date.available2017-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-30
dc.identifier.citation方煒、饒瑞佶. 2004. 高亮度發光二極體在生物產業之應用. 中華農學會報5:432–446.
王慧媛. 2010. 環境控制下波士頓萵苣兩階段立體化栽培模式之探討. 國立台灣大學農學院生物產業機電工程學系碩士論文.
古在豐樹著、方煒譯. 2011. 太陽光型植物工廠-永續性的先進植物工廠. 財團法人豐年社出版.
刑禹賢. 2002. 無土栽培原理與技術. 中國農業出版社. 北京. P.1-4.
沈再發、許淼淼. 1989. 作物營養特性及影響養液組成之因素. 養液紮培技術講習會刊第二輯. p.44-59.
林淑妃. 1998. 利用栽培管理與貯藏方式降低葉菜類硝酸離子含量試驗. 國立台灣大學園藝所碩士論文. 台北.
吳正宗、王銀波. 1995. 一些影響小白菜硝酸態氮含量的環境因子. 中國農業化學會誌. 33(2)L:125-133.
高辻正基著、方煒譯. 2011. 完全控制型植物工廠. 財團法人豐年社出版.
高德錚. 1991. 水耕蔬菜品質之研究 動態浮根式水耕系統之開發與利用. 第六篇. pp.151-171. 臺灣省臺中區農改場出版.
翁仁憲. 2000. 日射溫度及採收時間對水耕小白菜硝酸態氮含量之影響. 台灣農業化學與食品科學. 38(2): 107-113.
郭孚耀. 1998. 遮陰及氮肥對芥藍菜硝酸態氮累積之影響. 台中區農業改良場研究彙報. 58:59-66.
陳柏均. 2009. 肥料施用時間對水耕小白菜抗氧化性之影響. 國立中興大學土壤環境科學系碩士論文.
陳品如. 2012. 植物工廠之菠菜水耕栽培. 國立台灣大學園藝所碩士論文. 台北.
陳新平、鄒春琴、劉亞萍、張福鎖. 2000. 波菜不同品種累積硝酸態氮能力的差異及其原因. 植物營養與肥料學報. 6:30-34.
都韶婷、章永松. 2010. 增施CO2降低小白菜硝酸態氮積累的機理研究. 植物營養與肥料學報. 16(6):1509-1514.
黃裕銘、陳建中. 2003. 養液氯及鉀濃度對水耕小白菜生長、硝酸態氮及其他養分含量之影響. 土壤與環境. 6(2):87-95.
蔡尚光. 1987. 水耕栽培的魅力. 淑馨出版社.
鍾仁賜、倪禮豐. 1997. 停止硝酸態氮的供應雨遮光對青梗白菜氮組成的影響. 中國農業化學會誌. 35(4):453-461.
饒瑞佶、方煒、蔡田龍. 2003. 超高亮度紅、藍光LED燈應用於蝴蝶蘭組培苗栽培之研究. 農業機械學刊 12:93–100.
Asher, C. J., and D. G. Edwards. 1983. Modern solution culture techniques. Encyclopedia plant physiology. Springer-Verlag, New York. pp. 94-119.
Amr, A., and N. Hadidi. 2001. Effect of cultivar and harvest date on nitrate (NO3) and nitrite (NO2) content of selected vegetables grown under openfield and greenhouse conditions in jordan. J. Food Composition Analysis. 14:59-67
Albright, L. D., A. J. Both, and A. J. Chiu. 2000. Controlling greenhouse light to a consistent daily integral. Trans. ASAE. 43(2):421-431.
Aslam, M., R. L. Travis, and D. W. Rains. 2001. Different effect of amino acids on nitrate uptake and reduction systems in barley roots. Plant Sci. 160:219-228.
Blevins, D.G. Role of Potassium in protein metabolism in plants. In potassium in Agriculture; Munson, R.D., Ed.; American Society of Agronomy: Madison, WI, pp.131-162.
Bendich, A. 1990. Antioxidant nutrients and immune function, p.1-12. In: Antioxidant nutrients and immune functions. Vol. 262. Plenum Press, New York.
Bolle-Jones, E.W. 1955. The interactions of iron and potassium in the potato plant. Plant Soil. 6:129-173.
Briggs, W. R. 1999. Blue light photoreceptors in higher plant. Annu. Rev. Cell Dev. Biol. 15:33-62.
BjÖrne, H. 2005. The Nitrite Ion: Its role in vasoregulation and host defenses. Master Thesis. Department of Physiology and Pharmacology Section of Anesthesiology and Intensive Care Medicine, Karolinskka Institute, Stockholm, Sweden.
Benton, J., and J. Jones. 1982. Hydroponics: Its history and use in plant nutrition studies. J. Plant Nutr. 5(8): 1003-1030.
Brady, N. C., and R. R. Wwil. 2008. The nature and properties of soil. P.542-570. Nitrogen and sulfur economy of soils. Pearson Education, Upper Saddle River, Nexw Jersey.
Brennan, R. F., and M. D. A., Bolland. 2009. Comparing the nitrogen and potassium requirements of canola and wheat for yield and grain quality. J Plant Nutr. 32(12): 2008-2026.
Brandão, A. D., and L. Sodek. 2009. Nitrate uptake and metabolism by roots of soybean plants under oxygen deficiency. Braz. J. Plant Physiol. 21(1): 13-23.
Beevers, L., L. E. Schraser, D. Flesher, and R. H. Hageman. 1965. The role of light and nitrate in the induction of nitrate reductase in radish cotyledons and maize seedlings. Plant physiol. 40:691-698.
Botrel, A., C. Magné, and W. M. Kaiser. 1996. Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol. Biochem. 34:645-52.
Both, A. J., L. D. Albright, and R.W. Langhans. 1997. Coordinated management of daily par integral and carbon dioxide for hydroponic lettuce production. Acta Hort. 418: 45-51
Bores, W., W. Heller, and C. Michel. 1998. The chemistry of flavonoids. Pp.112 In: Flavonoids in health and disease. Marcel Dekker, New York.
Chory, J. 1997. Light modulation of vegetative development. Plant Cell. 9: 1225–1234.
Crawford, N. M. 1995. Nitrate: nutrient and signal for plant growth. Plant Cell 7:859-868.
Champigny, M. L. 1995. Integration of photosynthetic carbon and nitrogen metabolism in higher plant. Photosynthesis Research. 46:117-127.
Crafts-Brandner, S. J., and J. E. Harper. 1982. Nitrate reduduction by roots of soybean (Glycine max L. Merr.) seedlings. Plant Physiol. 69: 1298-1303.
Cockshull, K. E., D. W. Hand, and F. A. Langton. 1981. The effect of day and night temperature on flower initation and development in chrysanthemum. Acta Hort. 125: 101-110.
Chen, B. M., Z. H. Wang, S. X. Li, G. X. Wang, H. X. Song, and X. N. Wang. 2004. Effect of nitrate supply on plant growth, nitrate accumulation metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Sci. 167:635-643.
Drew, M. C. 1997. Oxygen deficiency and root metabolism: injury and acclimatation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol. 48:223-50.
Despommier, D. 2008. Vertical farming. Accessed 1 Aguest.
European Community (EC). 2001. European Commission Regulation. No.466/2001. Official Journal of the European Communities L 77/6.
Epstein, E. 1953. Mechanism of ion absorption by roots. Nature. 171:83-84.
Fageria, N. K. 1983. Ionic Interactions in Rice Plants from Dilute Solutions. Plant Soil. 70: 309-316.
Fageria, V. D. 2001. Nutrient interactions in crop plants. J. Plant Nutr. 24(8): 1269-1290.
Forde, B. G. 2000. Nitrate transporters in plants: structure, function and regulation. Biochemica et Biophysica Acta 1465: 219-235.
Fankhauser, C., and J. Chory. 1999. Photomorphogenesis: Light receptor kinases in plants. Current Biology. 9(4): 123-126.
Francis, D., and D. A. Sorrell. 2001. The interface between the cell cycle and plant growth regulators: a mini review. Plant Growth Regulation 33: 1-12.
Fabiano, V. R., W. A. Jackson, and R. J. Volk. 1987. Potassium influx into maize root systems: influence of root potassium concentration and ambient ammonium. Plant Physiol. 84: 1416-1420.
Fonseca, F., C. G. Bowsher, and J. Stulen. 1997. Impact of elevated atmospheric CO2 on nitrate reductase transcription and activity in leaves and root of Plantago major. Physiol. Plant. 100: 940-948.
Fan, T. M., R. M. Higashi, and A. N. Lane. 1988. An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch Biochem Biophys. 266: 592-606.
Gupta, U.C. 1979. Boron Nutrition of Crops. Adv. Agron. 31: 273-307.
Glaab, J., and W. M. Kaiser. 1993. Rapid modulation of nitrate reductase in pea roots. Planta 191: 173-179.
Goins, G. D., R. M. Wheeler, and J. C. Sarger. 2004. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortScince 39(7): 1617-1622.
Hoff, J. E., and G. E. Wilcox. 1970. Accumulation of nitrate in tomato fruit and its effect on detinnig. J. Am. Soc. Hort. Sci. 95: 92-94.
Huffaker, R. C., and D. W. Rains. 1978. Factors influencing nitrate acquisition bt plant, assimilation, and fate of reduced nitrogen. In. D. R. Nielsen and J. G. MacDonald (eds.) “Nitrogen in the Environment”. Vol. Π. pp. 1-43. Academic Press, New York.
Hotchkiss, J. H., and R. G. Gassens. 1987. Nitraten and nitroso compounds in foods. Food Technology. 41(4): 127-136.
Harry, S. 2004. All colours in light are equal for photosynthesis. - Flower Tech, 7(2): 9-11.
Haba, P., Agüera, L. Benitez, and J. M. Maldonado. 2001. Modulation of nitrate reductasw activity in cucumber (Cucumis sativus) roots. Plant Sci. 161:231-237.
Jao, R.C. and F., Wei. 2003. An adjustable light source for photo-phyto related research and young plant production. ASAE 19: 601–608.
Jaenicke, H., H. S. Lips, W. R. Ullrich. 1996. Growth, ion distribution, potassium and nitrate uptake of Leucaena leucocephala, and effects of NaCl. Plant Physiol. Biochem. 34: 743-751.
Kemp, A. 1983. The effect of fertilizer treatment of grassland on the biological availability of magnesium to ruminants. In role of magnesium in animal nutrition;Fontenot, J. P., Bunce, G.E., Webb, K. E.., Allen, V. G., Eds. VPISU: Blacksburg, VA. P143-157.
Kaiser, W. M., and SC. 2001. Huber Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52: 1981-1989.
Kim, H. H. 2004. Green light supplementation for enhanced lettuce growth under red and blue light emitting diodes. Hortsci. 39(7): 1617-1622.
Karl, C. H., and J. Bonner. 1938. Photoperiodism in Relation to Hormones as Factors in Floral Initiation and Development. Botanical Gazette. 1938: 388-431.
Koch, K., and K. Mengel. 1977. Effect of K on N utilization by spring wheat during grain protein formation. Agron. J. 69: 477-480.
Kaiser, W. M., and S. C. Huber. 1994. Posttranslational regulation of nitrate reductase in higher plants. Plant Physiol. 106: 817-821.
Kim, H. H. 2004. Green light supplementation for enhanced lettuce growth under red and blue light emitting diodes. Hortsci. 39(7): 1617-1622.
Kim, H. H., Wheeler, R. M., and Sager J. C. 2006. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment – a review of research at kennedy space center. Acta Hort. 711: 111-120.
Kim, H. H., R. M. Wheeler, J. C. Sager, and G. D. Goins. 2004. A comparison of growth and photosynthetic characteristics of lettuce grown under red and blue light emitting diodes (LEDs) with and without supplemental green LEDs. Acta Hort. 657: 467-475.
Kim, T. H., W. Wang, Q. Li. 2012. Advancement in materials for energy-saving lighting devices. Front. Chem. Sci. Eng. 6(1): 13-26.
Karnouskos, S., A. W. Colombo, J. L. M. Lastra, and C. Popescu. 2009. Towards the energy efficient future factory. INDIN. 978: 367-371.
Knobeloch, L., B. Salna, A. Hogan, J. Postle, and H. Anderson. 2000. Blue babies and nitrate-contaminated well wate. Environ Health Perspect. 108(7): 675-678.
Kato, K., R. Yoshida, A. Kikuzaki, T. Hirai, H. Kuroda, K. Tanase, K. Takane, H. Ezura, and T. Mizoguchi. 2010. Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J. Agric. Food Chem. 58: 9505-9510.
Lee, S.H. and R.K. Tewari. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. Plantlets. Plant Cell Tiss Organ Cult 90:141–151.
Lorenz, O. 1978. Potential nitrate levels in edible plants. In Nitrogen in the Environment, Vol. 2.Soil-Plant-Nitrogen Relationship (D. Neilson and J. MacDonald, Eds.), pp. 201-219. Academic Press, New York.
Lester, G. E. J. L. Jifon, and D. J. Makus. 2010. Impact of potassium nutrition on food quality of fruits and vegetables: a condensed and concise review of the literature. Better Crops. 94(1): 18-21.
Larios, B., E. Agüera, P. Haba, R. Pêrez-Vicente, and J. M. Maldonado. 2001. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity. Planta 212: 305-312.
Mayo, N. S. 1895. Cattle poisoning by nitrate of potash. Kan. Agric. Exp. Stn. Bull. 49: 3-11.
Maevskaya, S. N., and N. G. Bukhov. 2005. Effect of light quality on nitrogen metabolism of radish plants. Russ. J. Plant Physiol. 52: 304-310.
Massa, G. D. 2008. Plant productivity in response to LED lighting. Hortsci. 43(7): 1951-1955.
Magee, P. N., and J. M. Barnes. 1956. The Production of Malignant Primary Hepatic Tumours in the Rat by Feeding Dimethylnitrosamine. Br J Cancer. 10(1): 114-122.
Martinez, V., and A. Cerda. 1989. Nitrate reductase activity in tomato and cucumber leaves as influenced by NaCl and N source. J. Plant Nutr. 12: 1335-1350.
Miller, A. J., and M. D. Cramer. 2004. Root nitrogen acquisition and assimilation. Plant Soil. 274: 1-36.
Mills, H.A., A. V. Barker and D. N. 1976. Effect of nitrapyrin on nitrate accumulation in spinach. J. Am. Soc. Hort. Sci. 101: 202-204.
Morimoto, T., T. Torii, and Y. Hashimoto. 1995. Optimal control of physiological processes of plants in a green plant factory. Control Eng. Pract. 3: 505-511.
Maynard, D. N., A. V. Barker, P. L. Minotti, and N. H. Peck. 1976. Nitrate accumulation in vegetables. Adv. Agron. 28:71-118.
Morard, P., J. Silvestre, L. Lacoste, E. Caumes, and T. Lamaze. 2004. Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol . 161: 855-865.
Nhut, D. T., L.T.A. Hong, H. Watanabe, M. Goi, and M. Tanaka. 2002. Growth of banana plantlets cultured in vitro under red and blue light-emitting diode (led) irradiation source. Acta Hort. 575: 117-124.
Nhut, D. T., T. Takamura, H. Watanabe, K. Okamoto, and M. Tanaka. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture. 73: 43-52.
Olday, F. C., A. V. Baker, and D. N. Maynard. 1976. A physiological basis for different patterns of nitrate accumulation in cucumber and pea. J. Am. Soc. Hori. Sci. 101:219-221.
Ott, K., R. Koenig, and C. Miles. 2008. Influence of plant part on nitrate concentration in Lettuce and Spinach. Int. J. Veg. Sci. 14: 351-361.
Ohashi-Kaneko, K., M. T. N. Kon, K. Fujiwara, and K. Kurata. 2007. Effect of light quality on growth and vegetable quality in leaf Lettuce, Spinach and Komatsuna. Environ. Control Biol. 45: 189-198.
Pettigrew, W. T. 2008. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133: 670–681.
Prinsley, R. T., K. J. Dietz, and R. C. Leegood. 1986. Regulation of photosynthetic carbon assimilation in spinach leaves after a decrease in irradiance. Biochim. Biophys. Acta. 849: 254-263.
Resh, H. 1991. Hydroponic food production. 4th ed. Woodbridge Press, Santa Barbara, Calif.
Rao, K. P., and D. W. Rains. 1976. Nitrate absorption by barley. II. Influence of nitrate reductase activity. Plant Physiol. 62: 59-62.
Roosta, H. R., and J. K. Schjoerring. 2008. Effects of nitrate and potassium on ammonium toxicity in cucumber plants. J. Plant Nutr. 31: 1270–1283
Rijck, G. D. and E. Schrevens. 1998. Comparison of the mineral composition of twelve standard nutrient solutions. J. Plant Nutr. 21(10): 2115-2125.
Raul, C. N., S. Adamowicz, and P. Robin. 1999. Nitrate accumulation in plant: a role for water. J. Exp. Bot. 50:613-624.
Parks, B. M. P. H. Quail, and R. P. Hangarter. 1996. Phytochrome a regulates red-light induction of phototropic enhancement in arabidopsis. 110(1): 155-162.
Roberts, J., F. Andrade, and I. Anderson. 1985. Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol. 77: 492-4.
Rive-Evans, C., N. Miller, and Paganga. 1997. Antioxidant properties of phenolic compounds. Plant Sci. 2:152-159.
Rengel, Z., P. M. Damon, and I. Cakmak. 2008. Physiologia plantarum. 133: 624-636.
Rahayu, Y. S., P. Walch-Liu, G. Neumann, V. Romheld, N. von Wiren, and F. Bangerth. 2005. Root-derived cytokinins as long-distance signals for NO3-induced stimulation of leaf growth. J. Exp. Botany 56: 1143–1152.
Santamaria, P. 2006. Nitrate in vegetables: toxicity, content, intake and EC regulation. J. aci food agric 86: 10-17.
Stoy, V. 1955. Action of different light qualities on simultaneous photosynthesis and nitrate assimilation in wheat leaves. Physiol. Plant. 8: 963-986.
Smith, D. 1975. Effects of potassium topdressing a low fertility silt loam soil on alfalfa herbage yields and composition and on K values. Agron. J. 67: 60-64.
Smith, D. 1987. Rockwool in horticulture. Grower Books, London. pp.153.
Swiader, J. M. 1986. Characterization of ammonium and nitrate absorption in Pumpkin (Cucurbita moschata poir.) J. Plant Nutr. 9: 103-113
Smirnoff, N., G. R. Stewart. 1985. Nitrate assimilation and translocation by higher plants: comparative physiology and ecological consequences. Physiol. Plant. 64: 133-140.
Schwartz, A., and E. Zeiger. 1984. Metabolic energy for stomatal opening. Roles of photophosphorylation and oxidative phosphorylation. Planta. 161: 129-136.
Steingrover, E., J. Woldendrop, and L. Sijsma. 1986. Nitrate accumulation and its relation to leaf elongation in spinach leaves. J. Exp. Bot. 37: 1093-1102.
Santamaria, P., A. Elia, F. Serio, and E. Todaro. 1999. A survey of nitrate and oxalate content in fresh vegetables. J. Sci. Food Agric. 79: 1882-1888.
Sun, H. M., T. L. Li, H. Xu, Y. Guo, and W. L. Fan. 2000. Effect of potassium fertilizers on yield and quality of tomato under different application of nitrogen fertilizers. J Shenyang Agr University 31(1): 68-71.
Tischner, R. 2000. Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ. 23: 1005-1024.
Taiz, L., and E. Zeiger. 2006. Plant Physiology. The Benjamin/Cummings Publishing Company, Inc. pp.290-303.
Tennessen, D. J., E.L. Singsaas, and T.D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosyn. Res. 39: 85–92.
Ter, S., J. C., L. Koster-Kamphuis, E.A. van Straaten, P.P. Forget and W.A. Buurman, 1998. Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic. Biol. Med. 25: 953-963.
Vereecke, A. 2009. How to optimize knowledge sharing in a factory network. Vlerick Leuven Gent Management School. pp.1-7.
Volker, R., and E. A. Kirkby. 2010. Research on potassium in agriculture: needs and prospects. Plant Soil. 335: 155-180.
Walters, C. L. 1991 Nitrate and Nitrite in food. In Michaell, H. (eds) Nitrate and nitrite in food and water. Ellis Horwood Ltd. P.93-112.
Winton, E. F., R. G. Tardiff, and L. J. McCabe. 1971. Nitrate in drinking water. Jour. AWWA. 63: 95-98.
Watanabe, H. 2011. Light-controlled plant cultivation system in japan - development of a vegetable factory using leds as a light source for plants. Acta Hort. 907: 37-44.
Weyer, P. J., J. R. Cerhan, B. C. Kross, and G. R. Hallberg. 2001. Municipal drinking water nitrate level and cancer risk in older women: The Iowa women’s health study. Epidemiology. 11: 327-338.
Yin, Y. X. 1993. An investigation of nitrate content of vegetable in Yin Chuan and of methods of contamination evaluation and prevention. Ningxia Journal of Agro-forestry sciences and Technology.1: 40-43.
Yamasaki, H., and Y. Sakihama. 2000. Simultaneous production of nitric oxide and peroxynitrite by plant nitrite reductase: in vitro evidence for nr-dependent formation of active nitrogen species. FEBS Lett. 468: 89-92.
Yamashita, H., and Y. Komeda. 2010. Control of flower development. Plant Developmental Biology. 1: 195-208.
Yang, C. Y., M. F. Cheng, S. S. Tsai, and Y. L. Hsieh. 1998. Calcium, magnesium, and nitrate in drinking water and gastric cancer mortality. Jpn. J. Cancer Res. 89: 124-130.
Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortSci. 36(2): 1617-1622.
Yang, S. M., F. M. Li, S.S. Malhi, P. Wang, D. R. Suo, and J. G. Wang. 2004. Long-term fertilization effects on crop yield and nitrate nitrogen accumulation in soil in Northwestern China. Agron J 96: 1039-1049.
Zhang, F., J. Niu, W. Zhang, X. Chen, C. Li, L. Yuan, and Jianchang Xie. 2010. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil. 335: 21-34.
Zou, T. X., T. B. Dai, D. Jiang, Q. Jing, and W. X. Cao. 2006. Potassium supply affected plant nitrogen accumulation and translocation and grain protein formation in winter wheat. Scientia Agri Sinica 39(4): 686-692.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65224-
dc.description.abstract近年來,為因應氣候變遷與可耕地減少等問題所造成蔬菜供應量不足之危機,植物工廠之栽培型式逐漸蓬勃發展。植物工廠內主要以水耕為栽培模式,但水耕作物常因氮肥供應充足而累積過高之硝酸態氮含量。本研究在環控室內以水耕、改良式營養薄膜技術與岩棉法等三種不同栽培模式,分別施予白光T5、冷陰極燈管(cold cathode fluorescent lamp, CCFL)與發光二極體(Light emitting diode, LED)之人工光源栽培下,發現以水耕栽培法搭配LED所栽培之萵苣具最佳生長速率與生理機能含量,為最佳C/P值之栽培模式,但其硝酸態氮含量高達4720 ppm,高於歐盟標準含量4500 ppm。於採收前7天調控環境中之養液流動性、光周期、光量、養液成份與施用養液周期長短,以維持波士頓萵苣之生長品質與並降低硝酸態氮之累積。以靜置式養液系統栽培下之萵苣鮮重降低約21%,但亦顯著降低硝酸態氮含量約27%,並於外觀表現並無顯著性差異;萵苣採收前7天,以光周期16h亮/ 8h暗,與光量200±10 μmol/m2•s之光環境照射下,萵苣具最佳之生育狀態、硝酸態氮代謝速率與硝酸態氮還原酶活性;提高Hoagland養液中之鉀離子濃度至K/N比例為3/2時,可使萵苣具最佳之生長與外觀表現,且顯著降低硝酸態氮含量約25%,使硝酸態氮含量低至2600±100 ppm。應用上述之最佳栽培模式栽培六種生菜萵苣,可見於採收前7天以K/N比例3/2之Hoagland養液栽培之萵苣皆具較佳之生長狀態與硝酸態氮代謝能力,顯示在未來可應用此栽培模式於植物工廠中大量生產符合歐盟規定標準之生菜萵苣。zh_TW
dc.description.abstractDue to climate change and reduced arable land worldwide, the supply of vegetable crops may become inadequate. In response to these uncertainty, plant factory may turn to become a solution. Hydroponic is the main cultivation mode in most plant factory, however, hydroponic often cause over accumulation of nitrate to crops due to nitrogen administration. In this study, we have monitored the accumulation of nitrate in vegetables using various light sources and fertigation strategies. To optimize growing condition for Lactuca sativa (Boston lettuce), three cultivation patterns, static hydroponic, modified nutrient film and rockwool method were used, and three artificial light sources T5 fluorescent white lamp, cold cathode fluorescent lamp (CCFL) and Light emitting diodes (LED) were applied. Lettuce has optimal growth using static hydroponic and LED modes. Further on, 7 days prior to harvest, we used controlled flow of nutrient solution, photoperiod, light intensity and nutrient composition to lower the accumulation of nitrate in plants. The nitrate has 27% reduction but also 21% fresh weight loss been observed. Further application of 16h/8h photoperiod, LED intensity 200 ± 10 μmol/m2 • s, and K/N ratio of 3/2 in Hoagland solution, we observed an optimal growing appearance and 25% reduction of nitrate, coming to 2600 ± 100 ppm. The parameters were then given to other six lettuce cultivars, all cultivars have met the standards of EU regulation in nitrate content.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:30:58Z (GMT). No. of bitstreams: 1
ntu-101-R99628207-1.pdf: 1417598 bytes, checksum: c31fb508356c261492f53768154a46c2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 viii
附件目錄 ix
壹、前言 1
1. 前言 1
貳、文獻探討 6
1. 植物工廠 6
1-1 植物工廠的演進 6
1-2 植物工廠的分類 6
1-3 植物工廠之優點 7
2. 光對植物生長之影響 10
2-1光形態 10
2-2光周期 12
2-3 光量 13
2-4人工光源 14
3. 無土栽培對植物生長之影響 16
3-1 無土栽培之意義 16
3-2 營養元素對植物生長之功效 18
3-3 無土栽培之種類 22
4. 硝酸態氮 24
4-1 安全之硝酸態氮攝取量 24
4-2 硝酸態氮於人體之代謝與危機 27
4-3 影響植體硝酸態氮含量之因素 31
4-4 植物體中之硝酸態氮代謝 36
5. 研究目的 39
6. 試驗架構 40
參、材料與方法 41
1. 試驗材料與設備 41
1-1本研究使用之儀器設備 41
1-2本研究使用之藥品與試劑 41
1-3供試作物 43
1-4育苗與定植 44
2. 試驗處理與方法 44
2-1 栽培模式挑選試驗 44
2-2 水耕萵苣累積硝酸態氮趨勢 45
2-3 養液流動性與土耕栽培對萵苣生長之影響 46
2-4 最佳光周期之挑選 47
2-5 最佳光量之挑選 47
2-6 養液成份調配對萵苣生長及生理之影響 48
2-7 日夜更換養液對萵苣生長及生理之影響 49
2-8 養液栽培時期對萵苣生長及生理之影響 49
2-9 各生菜萵苣之生長表現差異 49
3. 成份分析 55
3-1 生育性狀調查 55
3-2 植體硝酸態氮含量分析 55
3-3 植體之硝酸態氮還原酶活性分析 56
3-4 植體之亞硝酸態氮含量分析 56
3-5 植體之銨離子含量分析 57
3-6 總游離胺基酸含量分析 57
3-7 植體之蛋白質含量分析 58
3-8 抗氧化特性分析 58
4. 統計分析 59
肆、結果與討論 60
1. 栽培模式挑選試驗 60
2. 水耕萵苣累積硝酸態氮趨勢 75
3. 養液流動性與土耕栽培對萵苣生長之影響 81
5. 最佳栽培光量之挑選 91
6. 養液成份調配對萵苣生長及生理之影響 98
7. 日夜更換養液對萵苣生長之影響 105
8. 養液栽培時期對萵苣生長之影響 109
9. 各生菜萵苣之表現差異 113
伍、結論 117
陸、參考文獻 118
dc.language.isozh-TW
dc.subject萵苣zh_TW
dc.subject水耕zh_TW
dc.subject人工光源zh_TW
dc.subject硝酸態氮zh_TW
dc.subject硝酸態氮還原&#37238zh_TW
dc.subjectNitrateen
dc.subjectHydroponicsen
dc.subjectLettuceen
dc.subjectArtificial lightsen
dc.subjectNitrate reductaseen
dc.title環控因子調控水耕萵苣硝酸態氮含量之探討zh_TW
dc.titleStudy on The Effects of Controlled Environmental Factors to Nitrate Content in Hydroponic Lettuce (Lactuca Sativa)en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅筱鳳,曾文聖
dc.subject.keyword萵苣,水耕,人工光源,硝酸態氮,硝酸態氮還原&#37238,zh_TW
dc.subject.keywordLettuce,Hydroponics,Artificial lights,Nitrate,Nitrate reductase,en
dc.relation.page130
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved