請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑華(Shu-Wha Lin) | |
| dc.contributor.author | Chun-Yu Chen | en |
| dc.contributor.author | 陳軍宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:30:06Z | - |
| dc.date.available | 2017-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-28 | |
| dc.identifier.citation | 1 Hershko, A. and Ciechanover, A. (1998) The ubiquitin system. Annu Rev Biochem, 67, 425-479.
2 Thrower, J.S., Hoffman, L., Rechsteiner, M. and Pickart, C.M. (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J, 19, 94-102. 3 Hicke, L. (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol, 2, 195-201. 4 Amerik, A.Y. and Hochstrasser, M. (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta, 1695, 189-207. 5 Mogk, A., Schmidt, R. and Bukau, B. (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol, 17, 165-172. 6 Hua, Z. and Vierstra, R.D. (2011) The cullin-RING ubiquitin-protein ligases. Annu Rev Plant Biol, 62, 299-334. 7 Duda, D.M., Scott, D.C., Calabrese, M.F., Zimmerman, E.S., Zheng, N. and Schulman, B.A. (2011) Structural regulation of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol, 21, 257-264. 8 Peters, J.M. (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol, 7, 644-656. 9 Hori, T., Osaka, F., Chiba, T., Miyamoto, C., Okabayashi, K., Shimbara, N., Kato, S. and Tanaka, K. (1999) Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene, 18, 6829-6834. 10 Lee, J. and Zhou, P. (2007) DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell, 26, 775-780. 11 Higa, L.A., Wu, M., Ye, T., Kobayashi, R., Sun, H. and Zhang, H. (2006) CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol, 8, 1277-1283. 12 Guerrero-Santoro, J., Kapetanaki, M.G., Hsieh, C.L., Gorbachinsky, I., Levine, A.S. and Rapic-Otrin, V. (2008) The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res, 68, 5014-5022. 13 Ohtake, F., Baba, A., Takada, I., Okada, M., Iwasaki, K., Miki, H., Takahashi, S., Kouzmenko, A., Nohara, K., Chiba, T. et al. (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature, 446, 562-566. 14 Higa, L.A. and Zhang, H. (2007) Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy. Cell Div, 2, 5. 15 Kerzendorfer, C., Hart, L., Colnaghi, R., Carpenter, G., Alcantara, D., Outwin, E., Carr, A.M. and O'Driscoll, M. (2011) CUL4B-deficiency in humans: understanding the clinical consequences of impaired Cullin 4-RING E3 ubiquitin ligase function. Mech Ageing Dev, 132, 366-373. 16 Higa, L.A., Mihaylov, I.S., Banks, D.P., Zheng, J. and Zhang, H. (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nat Cell Biol, 5, 1008-1015. 17 Higa, L.A., Yang, X., Zheng, J., Banks, D., Wu, M., Ghosh, P., Sun, H. and Zhang, H. (2006) Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle, 5, 71-77. 18 Zou, Y., Mi, J., Cui, J., Lu, D., Zhang, X., Guo, C., Gao, G., Liu, Q., Chen, B., Shao, C. et al. (2009) Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem, 284, 33320-33332. 19 Tripathi, R., Kota, S.K. and Srinivas, U.K. (2007) Cullin4B/E3-ubiquitin ligase negatively regulates beta-catenin. J Biosci, 32, 1133-1138. 20 Chenn, A. (2008) Wnt/beta-catenin signaling in cerebral cortical development. Organogenesis, 4, 76-80. 21 Kerzendorfer, C., Whibley, A., Carpenter, G., Outwin, E., Chiang, S.C., Turner, G., Schwartz, C., El-Khamisy, S., Raymond, F.L. and O'Driscoll, M. (2010) Mutations in Cullin 4B result in a human syndrome associated with increased camptothecin-induced topoisomerase I-dependent DNA breaks. Hum Mol Genet, 19, 1324-1334. 22 Nakagawa, T. and Xiong, Y. (2011) X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell, 43, 381-391. 23 Li, X., Lu, D., He, F., Zhou, H., Liu, Q., Wang, Y., Shao, C. and Gong, Y. (2011) Cullin 4B protein ubiquitin ligase targets peroxiredoxin III for degradation. J Biol Chem, 286, 32344-32354. 24 Larance, M., Kirkwood, K.J., Xirodimas, D.P., Lundberg, E., Uhlen, M. and Lamond, A.I. (2012) Characterization of MRFAP1 turnover and interactions downstream of the NEDD8 pathway. Mol Cell Proteomics, 11, M111 014407. 25 Ghosh, P., Wu, M., Zhang, H. and Sun, H. (2008) mTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Cell Cycle, 7, 373-381. 26 Wang, Y., Penfold, S., Tang, X., Hattori, N., Riley, P., Harper, J.W., Cross, J.C. and Tyers, M. (1999) Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol, 9, 1191-1194. 27 Dealy, M.J., Nguyen, K.V., Lo, J., Gstaiger, M., Krek, W., Elson, D., Arbeit, J., Kipreos, E.T. and Johnson, R.S. (1999) Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet, 23, 245-248. 28 Singer, J.D., Gurian-West, M., Clurman, B. and Roberts, J.M. (1999) Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev, 13, 2375-2387. 29 Zhong, W., Feng, H., Santiago, F.E. and Kipreos, E.T. (2003) CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature, 423, 885-889. 30 Liu, L., Lee, S., Zhang, J., Peters, S.B., Hannah, J., Zhang, Y., Yin, Y., Koff, A., Ma, L. and Zhou, P. (2009) CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell, 34, 451-460. 31 Kopanja, D., Roy, N., Stoyanova, T., Hess, R.A., Bagchi, S. and Raychaudhuri, P. (2011) Cul4A is essential for spermatogenesis and male fertility. Dev Biol, 352, 278-287. 32 Yin, Y., Lin, C., Kim, S.T., Roig, I., Chen, H., Liu, L., Veith, G.M., Jin, R.U., Keeney, S., Jasin, M. et al. (2011) The E3 ubiquitin ligase Cullin 4A regulates meiotic progression in mouse spermatogenesis. Dev Biol, 356, 51-62. 33 Arai, T., Kasper, J.S., Skaar, J.R., Ali, S.H., Takahashi, C. and DeCaprio, J.A. (2003) Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci U S A, 100, 9855-9860. 34 Arnold, S.J. and Robertson, E.J. (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol, 10, 91-103. 35 Tam, P.P. and Loebel, D.A. (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet, 8, 368-381. 36 Pfister, S., Steiner, K.A. and Tam, P.P. (2007) Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene Expr Patterns, 7, 558-573. 37 Liu, P., Jenkins, N.A. and Copeland, N.G. (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 13, 476-484. 38 Harper, M.I., Fosten, M. and Monk, M. (1982) Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos. J Embryol Exp Morphol, 67, 127-135. 39 Sugimoto, M., Tan, S.S. and Takagi, N. (2000) X chromosome inactivation revealed by the X-linked lacZ transgene activity in periimplantation mouse embryos. Int J Dev Biol, 44, 177-182. 40 Jiang, B., Zhao, W., Yuan, J., Qian, Y., Sun, W., Zou, Y., Guo, C., Chen, B., Shao, C. and Gong, Y. (2012) Lack of Cul4b, an E3 ubiquitin ligase component, leads to embryonic lethality and abnormal placental development. PLoS One, 7, e37070. 41 Liu, L., Yin, Y., Li, Y., Prevedel, L., Lacy, E.H., Ma, L. and Zhou, P. (2012) Essential role of the CUL4B ubiquitin ligase in extra-embryonic tissue development during mouse embryogenesis. Cell Res,doi:10.1038/cr.2012.48. 42 Ropers, H.H. and Hamel, B.C. (2005) X-linked mental retardation. Nat Rev Genet, 6, 46-57. 43 Chiurazzi, P., Schwartz, C.E., Gecz, J. and Neri, G. (2008) XLMR genes: update 2007. Eur J Hum Genet, 16, 422-434. 44 Ropers, H.H. (2006) X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev, 16, 260-269. 45 Tarpey, P.S., Raymond, F.L., O'Meara, S., Edkins, S., Teague, J., Butler, A., Dicks, E., Stevens, C., Tofts, C., Avis, T. et al. (2007) Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet, 80, 345-352. 46 Zou, Y., Liu, Q., Chen, B., Zhang, X., Guo, C., Zhou, H., Li, J., Gao, G., Guo, Y., Yan, C. et al. (2007) Mutation in CUL4B, which encodes a member of cullin-RING ubiquitin ligase complex, causes X-linked mental retardation. Am J Hum Genet, 80, 561-566. 47 Isidor, B., Pichon, O., Baron, S., David, A. and Le Caignec, C. (2010) Deletion of the CUL4B gene in a boy with mental retardation, minor facial anomalies, short stature, hypogonadism, and ataxia. Am J Med Genet A, 152A, 175-180. 48 Ohta, T., Michel, J.J., Schottelius, A.J. and Xiong, Y. (1999) ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol Cell, 3, 535-541. 49 Tyers, M. and Jorgensen, P. (2000) Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev, 10, 54-64. 50 Kipreos, E.T., Lander, L.E., Wing, J.P., He, W.W. and Hedgecock, E.M. (1996) cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell, 85, 829-839. 51 Spencer, C.M., Graham, D.F., Yuva-Paylor, L.A., Nelson, D.L. and Paylor, R. (2008) Social behavior in Fmr1 knockout mice carrying a human FMR1 transgene. Behav Neurosci, 122, 710-715. 52 Moretti, P., Bouwknecht, J.A., Teague, R., Paylor, R. and Zoghbi, H.Y. (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum. Mol. Genet., 14, 205-220. 53 (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell, 78, 23-33. 54 Irwin, S.A., Galvez, R. and Greenough, W.T. (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex, 10, 1038-1044. 55 Shahbazian, M., Young, J., Yuva-Paylor, L., Spencer, C., Antalffy, B., Noebels, J., Armstrong, D., Paylor, R. and Zoghbi, H. (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35, 243-254. 56 Moretti, P., Levenson, J.M., Battaglia, F., Atkinson, R., Teague, R., Antalffy, B., Armstrong, D., Arancio, O., Sweatt, J.D. and Zoghbi, H.Y. (2006) Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26, 319-327. 57 Zhao, X., D, D.A., Lim, W.K., Brahmachary, M., Carro, M.S., Ludwig, T., Cardo, C.C., Guillemot, F., Aldape, K., Califano, A. et al. (2009) The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Dev Cell, 17, 210-221. 58 Cox, B.J., Vollmer, M., Tamplin, O., Lu, M., Biechele, S., Gertsenstein, M., van Campenhout, C., Floss, T., Kuhn, R., Wurst, W. et al. (2010) Phenotypic annotation of the mouse X chromosome. Genome Res, 20, 1154-1164. 59 Hayashi, S., Lewis, P., Pevny, L. and McMahon, A.P. (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev, 119 Suppl 1, S97-S101. 60 Sorra, K.E. and Harris, K.M. (2000) Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501-511. 61 Lee, L.J. (2012) Neonatal fluoxetine exposure alters motor performances of adolescent rats. Dev Neurobiol, 72, 1122-1132. 62 Su, K.Y., Chien, W.L., Fu, W.M., Yu, I.S., Huang, H.P., Huang, P.H., Lin, S.R., Shih, J.Y., Lin, Y.L., Hsueh, Y.P. et al. (2007) Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. J Neurosci, 27, 2513-2524. 63 Sankoorikal, G.M., Kaercher, K.A., Boon, C.J., Lee, J.K. and Brodkin, E.S. (2006) A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biol Psychiatry, 59, 415-423. 64 Sayyah, M., Javad-Pour, M. and Ghazi-Khansari, M. (2003) The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience, 122, 1073-1080. 65 Badura-Stronka, M., Jamsheer, A., Materna-Kiryluk, A., Sowinska, A., Kiryluk, K., Budny, B. and Latos-Bielenska, A. (2010) A novel nonsense mutation in CUL4B gene in three brothers with X-linked mental retardation syndrome. Clin Genet, 77, 141-144. 66 Ravn, K., Lindquist, S., Nielsen, K., Dahm, T. and Tumer, Z. (2011) Deletion of CUL4B leads to concordant phenotype in a monozygotic twin pair. Clin Genet, DOI: 10.1111/j.1399-0004.2011.01839.x. 67 Wei, S., Lin, L.F., Yang, C.C., Wang, Y.C., Chang, G.D., Chen, H. and Chen, C.S. (2007) Thiazolidinediones modulate the expression of beta-catenin and other cell-cycle regulatory proteins by targeting the F-box proteins of Skp1-Cul1-F-box protein E3 ubiquitin ligase independently of peroxisome proliferator-activated receptor gamma. Mol Pharmacol, 72, 725-733. 68 McEvoy, J.D., Kossatz, U., Malek, N. and Singer, J.D. (2007) Constitutive turnover of cyclin E by Cul3 maintains quiescence. Mol Cell Biol, 27, 3651-3666. 69 Zhang, H.F., Tomida, A., Koshimizu, R., Ogiso, Y., Lei, S. and Tsuruo, T. (2004) Cullin 3 promotes proteasomal degradation of the topoisomerase I-DNA covalent complex. Cancer Res, 64, 1114-1121. 70 Salerno, S., Da Settimo, F., Taliani, S., Simorini, F., La Motta, C., Fornaciari, G. and Marini, A.M. (2012) Medicinal chemistry of indolylglyoxylamide GABAA/BzR high affinity ligands: identification of novel anxiolytic/non sedative agents. Curr Top Med Chem, 12, 286-311. 71 Wallenstein, G.V. and Hasselmo, M.E. (1997) GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol, 78, 393-408. 72 Bibbig, A., Traub, R.D. and Whittington, M.A. (2002) Long-range synchronization of gamma and beta oscillations and the plasticity of excitatory and inhibitory synapses: a network model. J Neurophysiol, 88, 1634-1654. 73 Korotkova, T.M., Haas, H.L. and Brown, R.E. (2002) Histamine excites GABAergic cells in the rat substantia nigra and ventral tegmental area in vitro. Neurosci Lett, 320, 133-136. 74 Korotkova, T.M., Eriksson, K.S., Haas, H.L. and Brown, R.E. (2002) Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro. Regul Pept, 104, 83-89. 75 Perez, M.F., Gabach, L.A., Almiron, R.S., Carlini, V.P., De Barioglio, S.R. and Ramirez, O.A. (2010) Different chronic cocaine administration protocols induce changes on dentate gyrus plasticity and hippocampal dependent behavior. Synapse, 64, 742-753. 76 Melzer, S., Michael, M., Caputi, A., Eliava, M., Fuchs, E.C., Whittington, M.A. and Monyer, H. (2012) Long-range-projecting GABAergic neurons modulate inhibition in hippocampus and entorhinal cortex. Science, 335, 1506-1510. 77 Andrawis, J.P., Hwang, K.S., Green, A.E., Kotlerman, J., Elashoff, D., Morra, J.H., Cummings, J.L., Toga, A.W., Thompson, P.M. and Apostolova, L.G. (2012) Effects of ApoE4 and maternal history of dementia on hippocampal atrophy. Neurobiol Aging, 33, 856-866. 78 Chapleau, C.A., Calfa, G.D., Lane, M.C., Albertson, A.J., Larimore, J.L., Kudo, S., Armstrong, D.L., Percy, A.K. and Pozzo-Miller, L. (2009) Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis, 35, 219-233. 79 Qin, M., Xia, Z., Huang, T. and Smith, C.B. (2011) Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neuroscience, 194, 282-290. 80 Stuss, D.P., Boyd, J.D., Levin, D.B. and Delaney, K.R. (2012) MeCP2 mutation results in compartment-specific reductions in dendritic branching and spine density in layer 5 motor cortical neurons of YFP-H mice. PLoS One, 7, e31896. 81 Grossman, A.W., Aldridge, G.M., Lee, K.J., Zeman, M.K., Jun, C.S., Azam, H.S., Arii, T., Imoto, K., Greenough, W.T. and Rhyu, I.J. (2010) Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice. Brain Res, 1355, 221-227. 82 Komendantov, A.O. and Ascoli, G.A. (2009) Dendritic excitability and neuronal morphology as determinants of synaptic efficacy. J Neurophysiol, 101, 1847-1866. 83 Hu, J., Zacharek, S., He, Y.J., Lee, H., Shumway, S., Duronio, R.J. and Xiong, Y. (2008) WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev, 22, 866-871. 84 Kumar, V., Zhang, M.X., Swank, M.W., Kunz, J. and Wu, G.Y. (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci, 25, 11288-11299. 85 Jaworski, J., Spangler, S., Seeburg, D.P., Hoogenraad, C.C. and Sheng, M. (2005) Control of dendritic arborization by the phosphoinositide-3'-kinase-Akt- mammalian target of rapamycin pathway. J Neurosci, 25, 11300-11312. 86 Belichenko, P.V., Oldfors, A., Hagberg, B. and Dahlstrom, A. (1994) Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport, 5, 1509-1513. 87 Fu, C., Cawthon, B., Clinkscales, W., Bruce, A., Winzenburger, P. and Ess, K.C. (2011) GABAergic Interneuron Development and Function Is Modulated by the Tsc1 Gene. Cereb Cortex, doi: 10.1093/cercor/bhr300. 88 Miranda, R., Sebrie, C., Degrouard, J., Gillet, B., Jaillard, D., Laroche, S. and Vaillend, C. (2009) Reorganization of inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area CA1 of dystrophin-deficient mdx mice. Cereb Cortex, 19, 876-888. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65211 | - |
| dc.description.abstract | 在真核細胞中,蛋白質的降解系統主要作用於清除受損或是不需要的蛋白來維持細胞的正常生理。蛋白質降解受到嚴密的調控,以免對細胞內正在執行正常生理功能的蛋白造成損害。泛素 (ubiquitin) 為在真核細胞物種之間具備高度同源性的小分子蛋白。當細胞需要降解特定蛋白時,會利用一組特別的酵素系統將泛素連接到目標蛋白上。一旦目標蛋白重複被接上泛素而形成泛素鏈後,26S蛋白酶體會辨認出具有泛素鍵的蛋白將其分解。泛素連接到目標蛋白上需要靠泛素連結酶 (ubiquitin ligase, E3) 在正確的時間地點將泛素連結到目標蛋白上使其被26S蛋白酶體所分解。在真核細胞中眾多的泛素連結酶中,cullin蛋白為其中最大的家族。Cullin 4b (Cul4b)是cullin 家族的成員之一,位於X染色體上。在人類中,CUL4B基因突變後會導致X染色體遺傳性智能遲緩(X-linked mental retardation)。
本論文以條件式基因剔除策略,用不同的Cre基因轉殖小鼠建立Cul4b基因剔除小鼠來研究Cul4b的生理功能。利用Prm1-Cre基因轉殖小鼠來剔除Cul4b基因時,發現Cul4b基因剔除小鼠在胚胎發育早期便會死亡,顯示Cul4b基因對於胚胎發育的重要性。當利用Sox2-Cre基因轉殖小鼠在越過胚胎發育早期的時間點(第6.5~7.5天)後才剔除Cul4b基因時,此Cul4b基因剔除小鼠能夠存活。但此小鼠在經過動物行為測試及海馬迴神經樹突複雜度的測量後證實Cul4b基因剔除小鼠有智能遲緩的特徵。研究上述兩種Cul4b基因剔除小鼠的致病機制後,可以幫助我們了解Cul4b在胚胎發育及智能遲緩中所扮演的角色。 | zh_TW |
| dc.description.abstract | In eukaryotes, the main function of protein degradation system is to degrade damaged or unneeded proteins to maintain the normal cellular physiology. Protein degradation is rigidly controlled to avoid damaging the proteins which are executing normal biological functions in cell. Ubiquitin is a small protein which is highly conserved among eukaryotic species. When specific proteins are needed to be degraded, ubiquitin will be covalently ligated to targeted protein via specific enzyme systems. Once the targeted proteins are ligated by ubiquitin repeatedly to form a poly-ubiquitin chain, 26S proteasome will recognize the targeted proteins which are labeled by poly-ubiquitin chains and then degrade them. The ligation of ubiquitin to targeted proteins and recognition of 26S proteasome in the appropriate time and space needs E3 ubiquitin ligases. Among a large amount of E3 ligases in eukaryotes, cullin proteins are the largest family. Cullin 4b (Cul4b) located on X chromosome is one of the members in cullin family. In human, mutation in CUL4B results in X-linked mental retardation.
This dissertation describes the conditional knockout strategy by using different Cre transgenic mice to study the biological function of Cul4b. Deletion of Cul4b by Protamine-1-Cre transgenic mice leading to early embryo lethal suggests that Cul4b plays an important role in mouse embryo development. When the Sox2-Cre transgenic mice are used to delete Cul4b beyond the time of early embryonic development (E6.5 to E7.5), Cul4b knockout mice are viable. Characterization of Cul4b knockout mice through behavioral test and examination of dendritic complexity demonstrate that Cul4b knockout mice represent the mental retardation syndrome. To study the pathogenic mechanism of two Cul4b knockout mice mentioned above helps us to understand the important role of Cul4b in embryonic development and mental retardation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:30:06Z (GMT). No. of bitstreams: 1 ntu-101-F92424003-1.pdf: 8988065 bytes, checksum: 28c58a9fd9232aa99e94c9d0df7a2a12 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………….……...i
誌謝……………………………………………………………………………….……..ii 序言……………………………………………………………………………………..iii Preface..…...…………………………………………………………………………....iv Contents…...……………………………………………………………………….......vi Abbreviation…..…………………………………………………………………….....xi List of figures……...…………………………………………………………….........xiii List of tables…………………………………………………………………………...xv List of appendix tables……………………………………………………………….xvi List of appendixes...…………………………………………………………………xvii Section 1 The Role of Cul4b in embryogenesis………………………….…………….1 摘要…….………………………………………………………………….…………….2 Abstract………………………………………………………………….……………...3 Chapter I Introduction……………………………………………………………...…5 1.1 Ubiquitin-proteasome pathway…………………………………...…………..5 1.2 E3 ubiquitin ligases…………..……………………………………………….6 1.3 Members of CRL family……...………………………………………………7 1.4 Members of CRL4……………………………………………………………7 1.5 Function of CRL4B…………..…………….………………………...…….…8 1.6 Cullin KO mice……………..………………………………………….…….10 1.7 Embryogenesis with emphasis on gastrulation……………………….….…..11 1.8 The specific aims and strategy of this study…………………………………12 Chapter 2 Material and method…………………………………………………...…13 2.1 Construction of targeting vector and mice with the loxP-floxed Cul4b allele …….…………………………………………………………………………13 2.2 Generation and genotyping of Cul4b+/∆ female mice and Cul4b KO embryos…….………………………………………………………………..14 2.3 Morphological and Histological Analysis…………………………………...15 2.4 Immunohistochemistry…………...………………………………………….16 2.5 BrdU incorporation of embryos……………………………………………..17 2.6 Measurement of Mitotic index……………………………………………....17 2.7 TUNEL assay……………….……………………………………………….17 2.8 Immunoblotting…………..………………………………………………….18 2.9 Blastocyst outgrowth…….……………………………………….…………19 2.10 Whole-mount in situ hybridization………………………………………….19 Chapter 3 Results………………………………………………………………..……21 3.1 Deletion of Cul4b in (Cul4blox/Y; Prm1-Cre) mice……..……………………21 3.2 Deletion of Cul4b results in early embryonic lethality……………….………22 3.3 Morphological and histological analysis of Cul4b KO embryo……...………22 3.4 Cul4b KO embryos retained epiblast pluripotent marker Oct-3/4 but decreased pluripotent marker Cdx-2 expression in extraembryonic ectoderm……………………………..………………………………………..24 3.5 Cul4b KO embryos retained proliferation capacity and did not increase apoptosis………………………………………..……………………………..25 3.6 CUL4B-specific substrates did not accumulate in Cul4b KO embryos…...….26 3.7 Cul4b KO-deficient blastocysts were defect in proliferation in vitro………...27 3.8 Loss of Cul4b results in abnormal expression pattern of mesoderm marker…………………..……………………………………………………..28 Chapter 4 Discussion………………………………………………………………….30 Section II Cul4b knockout mouse as a potential model for human XLMR…...…..35 摘要……………….………………………………………………….…….…..………36 Abstract………………………………………………………………….…………….37 Chapter 1 Introduction……………………………………………………………….38 1.1 Mutations in CUL4B cause XLMR…………..…………………...…………38 1.2 Substrates of CRL4B………..…………...…………………………………..38 1.3 Mouse model of XLMR.…...………………………………………..………39 1.4 CRL4B mutant mouse as a model for human XLMR………………………40 Chapter 2 Material and method…………………………………………………...…42 2.1 Generation and genotyping of Cul4b-deficient (Cul4b∆/Y) mice………...…42 2.2 Immunoblotting……………………………………………………………..42 2.3 Histology………………………………………………….………………...43 2.4 Immunofluorescence…..………...………………………………….……….44 2.5 Nissl stain……………………………..……………………………………..45 2.6 Golgi stain………………………………………………………...………....45 2.7 Behavioral analysis…….…………………………………...……………….46 2.8 Statistical analysis………..………………………………………………….51 Chapter 3 Results………………………………………………………………..……53 3.1 Deletion of Cul4b in Cul4b∆/Y (Cul4blox/Y; Sox2-Cre) mice…………...……53 3.2 XLMR-like phenotypes in Cul4b∆/Y mice……………..…………….………54 3.3 Expression of CUL4B -related substrates and neuronal markers in the……..… hippocampus…………………………………………………………...……..57 3.4 Reduced dendritic complexity and spine density in the hippocampal neurons of Cul4b∆/Y mice…………….…………………………………………………..60 Chapter 4 discussion………………………………………………………………….63 Section III Conclusion and perspective………………………….………………….71 Figure………………………………………………………………………………….76 Table………………………………………………………………………………….121 Appendix table……………………………………………………………………….125 Appendix …….………………………………………………………………………131 Reference…………………………………………………………………………….147 | |
| dc.language.iso | en | |
| dc.subject | 智能遲緩 | zh_TW |
| dc.subject | 泛素 | zh_TW |
| dc.subject | 胚胎發育 | zh_TW |
| dc.subject | 泛素連結酶 | zh_TW |
| dc.subject | E3 ligase | en |
| dc.subject | ubiquitin | en |
| dc.subject | embryogenesis | en |
| dc.subject | mental retardation | en |
| dc.title | 利用Cullin 4b基因剔除小鼠研究Cullin 4b
在胚胎發育及智能遲緩的角色 | zh_TW |
| dc.title | Utilization of Cullin 4b knockout mice to study the role of Cullin 4b in embryonic development and mental retardation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李立仁(Li-Jen Lee),張淑媛(Sui-Yuan Chang),吳君泰(June-Tai Wu),游麗如(Li-Ru You),楊瑞彬(Ruey-Bing Yang) | |
| dc.subject.keyword | 泛素,泛素連結酶,胚胎發育,智能遲緩, | zh_TW |
| dc.subject.keyword | ubiquitin,E3 ligase,embryogenesis,mental retardation, | en |
| dc.relation.page | 154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-30 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 8.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
