Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65210
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅(Chih-I Wu)
dc.contributor.authorChe-Chang Hsuen
dc.contributor.author許哲彰zh_TW
dc.date.accessioned2021-06-16T23:30:03Z-
dc.date.available2012-08-10
dc.date.copyright2012-08-10
dc.date.issued2012
dc.date.submitted2012-07-28
dc.identifier.citation1.Pope, M., H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042.
2.Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913.
3.Junqing Zhao, et al., Organic light-emitting diodes with AZO films as electrodes. Synthetic Metals, 2000. 114(3): p. 251-254.
4.陳金馫 and 黃孝文, OLED/有機電激發光材料與元件. 2005.
5.Ishida, T., H. Kobayashi, and Y. Nakato, Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. Journal of Applied Physics, 1993. 73(9): p. 4344.
6.Tang, C.W., S.A. VanSlyke, and C.H. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610.
7.Shigeki Naka, et al., Electrical properties of organic electroluminescent devices with aluminium alloy cathode. Synthetic Metals, 1997. 91: p. 129-130.
8.J. Salbeck, et al., Low molecular organic glasses for blue electroluminescence. Synthetic Metals, 1997. 91: p. 209-215.
9.Udo Bach, et al., Characterization of Hole Transport in a New Class of Spiro-Linked Oligotriphenylamine Compounds. Advanced Materials, 2000. 12: p. 14.
10.Dirk Ammermann, Achim, and W. Kowalsky, Multilayer Organic Light Emitting Diodes for Flat Panel Displays. Aeu-Archiv Fur Elektronik Und Ubertragungstechnik-Interational Journal of Electronics and Communications, 1995. 50(5): p. 327-333.
11.David Cachen and A. Kahn, Electron Energetics at Surface and Interfaces: Concepts and Experiments. Advanced Materials, 2003. 15: p. 4.
12.Mark T. Bernius, et al., Progress with Light-Emitting Polymers. Advanced Materials, 2000. 12: p. 23.
13.H. Kima, et al., Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices.pdf>. Applied Physics Letters, 2000. 76(3): p. 259.
14.Hertz, H.R., Über einen Einfluß des ultravioletten Lichtes auf die elektrische Entladung. Ann. Physik, 1887. 31: p. 983.
15.Lenard, P., Erzeugung von Kathodenstrahlen durch ultraviolettes Licht,. Ann. Phys, 1900. 2: p. 359.
16.Lenard, P., Über die lichtelektrische Wirkung. Ann. Phys, 1902. 8: p. 147.
17.BRUNDLE, C.R., Elucidation of Surface Structure and Bonding by Photoelectron Spectroscopy. Surface Science, 1975. 48: p. 99 - 136.
18.Elder, F., et al., Radiation from Electrons in a Synchrotron. Physical Review, 1947. 71(11): p. 829-830.
19.NSRRC, Synchrotron Light Source. 2012.
20.Tseng, P.C., et al., Current status of the 6 m low-energy spherical grating monochromator beamline at SRRC. Review of Scientific Instruments, 1995. 66(2): p. 1658.
21.NanoTechnology, O., EFM Evaporators
22.NanoTechnology, O., EA125 Energy analyser user's guide. 2002.
23.Matsushima, T., G.-H. Jin, and H. Murata, Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide. Journal of Applied Physics, 2008. 104(5): p. 054501.
24.You, H., et al., Improved performances of organic light-emitting diodes with metal oxide as anode buffer. Journal of Applied Physics, 2007. 101(2): p. 026105.
25.Kanno, H., et al., Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Applied Physics Letters, 2006. 89(2): p. 023503.
26.Tzung-Fang Guo, et al., White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates. Optics Express, 2009. 17(23): p. 21205-21215.
27.Kumaki, D., T. Umeda, and S. Tokito, Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoO[sub x] carrier injection layer. Applied Physics Letters, 2008. 92(1): p. 013301.
28.Chu, C.-W., et al., High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Applied Physics Letters, 2005. 87(19): p. 193508.
29.Kumaki, D., et al., High-mobility bottom-contact thin-film transistor based on anthracene oligomer. Organic Electronics, 2008. 9(5): p. 921-924.
30.Kyaw, A.K.K., et al., An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO[sub 3] hole selective layer. Applied Physics Letters, 2008. 93(22): p. 221107.
31.Zhao, D.W., et al., An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO[sub 3] hole-transporting layer. Applied Physics Letters, 2009. 95(15): p. 153304.
32.Schmidt, H., et al., Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Applied Physics Letters, 2009. 94(24): p. 243302.
33.Kim, D.Y., G. Sarasqueta, and F. So, SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1452-1456.
34.de Bruyn, P., D.J.D. Moet, and P.W.M. Blom, A facile route to inverted polymer solar cells using a precursor based zinc oxide electron transport layer. Organic Electronics, 2010. 11(8): p. 1419-1422.
35.Kröger, M., et al., Role of the deep-lying electronic states of MoO[sub 3] in the enhancement of hole-injection in organic thin films. Applied Physics Letters, 2009. 95(12): p. 123301.
36.Wang, F., et al., The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. Organic Electronics, 2008. 9(6): p. 985-993.
37.Lee, H., et al., The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N,N[sup ʹ]-bis(1-naphthyl)-N,N[sup ʹ]-diphenyl-1,1[sup ʹ]-biphenyl- 4,4[sup ʹ]-diamine interfaces. Applied Physics Letters, 2008. 93(4): p. 043308.
38.Wu, C.-I., et al., Electronic and chemical properties of molybdenum oxide doped hole injection layers in organic light emitting diodes. Journal of Applied Physics, 2009. 105(3): p. 033717.
39.Shin, W.-J., et al., Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes. Organic Electronics, 2008. 9(3): p. 333-338.
40.Matsushima, T., Y. Kinoshita, and H. Murata, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers. Applied Physics Letters, 2007. 91(25): p. 253504.
41.Bhosle, V., A. Tiwari, and J. Narayan, Epitaxial growth and properties of MoO[sub x](2<x<2.75) films. Journal of Applied Physics, 2005. 97(8): p. 083539.
42.Dissanayake, M. and L. Chase, Optical properties of CrO_{2}, MoO_{2}, and WO_{2} in the range 0.2-6 eV. Physical Review B, 1978. 18(12): p. 6872-6879.
43.Lee, J.-H., et al., A high performance inverted organic light emitting diode using an electron transporting material with low energy barrier for electron injection. Organic Electronics, 2011. 12(11): p. 1763-1767.
44.Chopra, N., et al., High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Applied Physics Letters, 2010. 97(3): p. 033304.
45.Hashimoto, M., et al., Highly efficient green organic light-emitting diodes containing luminescent three-coordinate copper(I) complexes. J Am Chem Soc, 2011. 133(27): p. 10348-51.
46.Shin, M.-G., et al., A new N-fluorenyl carbazole host material: Synthesis, physical properties and applications for highly efficient phosphorescent organic light emitting diodes. Organic Electronics, 2011. 12(5): p. 785-793.
47.Zheng, Y., et al., Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement. Applied Physics Letters, 2008. 92(22): p. 223301.
48.Xiao, L., et al., Recent progresses on materials for electrophosphorescent organic light-emitting devices. Advanced Materials, 2011. 23(8): p. 926-52.
49.Kao, M.-T., et al., Using a double-doping strategy to prepare a bilayer device architecture for high-efficiency red PhOLEDs. Journal of Materials Chemistry, 2011. 21(6): p. 1846.
50.Wang, P.-S., investigation of techniques for enhancement in carrier injection and interfacial chemistry in organic light emitting devices. 2012.
51.Werfel, F. and E. Minni, Photoemission study of the electronic structure of Mo and Mo oxides. J. Phys. C: Solid State Phys., 1983. 16: p. 6091-6100.
52.Rozzi, C., F. Manghi, and F. Parmigiani, Ab initio Fermi surface and conduction-band calculations in oxygen-reduced MoO3. Physical Review B, 2003. 68(7).
53.Erwin Lalik, et al., Mechanisms of Reduction of MoO3 to MoO2 Reconciled. the journal of physical chemistry B, 2001. 105(38): p. 9153-9156.
54.Lalik, E., Kinetic analysis of reduction of MoO3 to MoO2. Catalysis Today, 2011. 169(1): p. 85-92.
55.Wang, P.-S., et al., Enhancement of current injection in organic light emitting diodes with sputter treated molybdenum oxides as hole injection layers. Applied Physics Letters, 2011. 98(17): p. 173302.
56.Schlaf, R., et al., Determination of interface dipole and band bending at the Ag/tris (8-hydroxyquinolinato) gallium organic Schottky contact by ultraviolet photoemission spectroscopy. Surface Science, 2000. 450: p. 142-152.
57.J.Blochwitz, et al., Interface electronic structure of organic semiconductors with controlled doping levels. Organic Electronics, 2001. 2: p. 97-104.
58.R. Schlaf, et al., HOMO/LUMO Alignment at PTCDA/ZnPc and PTCDA/ClInPc Heterointerfaces Determined by Combined UPS and XPS Measurements. J. Phys. Chem. B, 1999. 103: p. 2984-2992.
59.Schlaf, R., et al., Observation of strong band bending in perylene tetracarboxylic dianhydride thin films grown on SnS[sub 2]. Journal of Applied Physics, 1999. 86(3): p. 1499.
60.Kröger, M., et al., P-type doping of organic wide band gap materials by transition metal oxides: A case-study on Molybdenum trioxide. Organic Electronics, 2009. 10(5): p. 932-938.
61.Lin, C.-T., et al., Influences of evaporation temperature on electronic structures and electrical properties of molybdenum oxide in organic light emitting devices. Journal of Applied Physics, 2010. 107(5): p. 053703.
62.Adachi, C., T. Tsutsui, and S. Saito, Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters, 1989. 55(15): p. 1489.
63.Yuji Hamada, et al., Blue-Light-Emitting Organic Electroluminescent Devices with Oxadiazole Dimer Dyes as Emitter. Jpn. J. Appl. Phys., 1992. 31: p. 1812-1816.
64.周佳興, Studies on the Synthesis and Light-Emitting Properties of the Derivatives including 1,2,3-Triazole and 1,3,4-Oxadiazole. 2004.
65.Brown, T.M., et al., Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes. Journal of Applied Physics, 2003. 93(10): p. 6159.
66.Hung, L.S., C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152.
67.Jabbour, G.E., et al., Highly efficient and bright organic electroluminescent devices with an aluminum cathode. Applied Physics Letters, 1997. 71(13): p. 1762.
68.Kim, Y.-E., H. Park, and J.-J. Kim, Enhanced quantum efficiency in polymer electroluminescence devices by inserting a tunneling barrier formed by Langmuir–Blodgett films. Applied Physics Letters, 1996. 69(5): p. 599.
69.Shaheen, S.E., et al., Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode. Journal of Applied Physics, 1998. 84(4): p. 2324.
70.Schlaf, R., et al., Photoemission spectroscopy of LiF coated Al and Pt electrodes. Journal of Applied Physics, 1998. 84(12): p. 6729.
71.Brown, T.M., et al., LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Applied Physics Letters, 2000. 77(19): p. 3096.
72.Piromreun, P., et al., Role of CsF on electron injection into a conjugated polymer. Applied Physics Letters, 2000. 77(15): p. 2403.
73.Yung-Ting Chang, et al., Boost electron injection for Electron Transport Layer of Oxadiazole Interacted with CsF and Al on Small Molecular, Solution Processed Single Layer, Blue Phosphorescence OLEDs (to be published). Advanced Materials, 2012.
74.Yeh, J.J. and I. Lindau, Atomic Subshell Photoionization Cross Sections and Asymmetry Parameters: 1 <= Z <= 103. 1985.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65210-
dc.description.abstract本論文利用高解析度的同步輻射光源光電子能譜研究電子及電洞注入層對有機發光元件的影響,並討論介面間的化學反應及電荷注入機制。
首先探討三氧化鉬(MoO3)在有機發光元件中所扮演的角色與能階的結構。在本篇論文的實驗中發現,若將三氧化鉬作為電洞注入層進行加熱處理,三氧化鉬會自分解產生大量的氧空缺,進而產生能隙能階(gap state),這些能隙能階不僅提供載子的傳輸路徑,也拉近費米能階與電洞傳輸層最高佔用分子軌域的距離,達到降低電洞注入能障的效果並提升電洞注入效率。
再來比較可做為有機發光元件電子注入層的氟化銫(CsF)分別鍍在OXD-7、BCP、金與鋁之間的能階結構變化。由於OXD-7含有苯環與oxadiazole moiety,在鍍上氟化銫後電子結構會改變,導致氟與銫的離子鍵減弱。銫離子會被oxadiazole moiety上氮的孤對電子對(lone pair)吸引形成Cs-OXD金屬錯合物,氟離子則與苯環上面的氫離子形成氫鍵。在OXD-7/氟化銫之上鍍鋁,鋁會與氟離子結合形成氟化鋁(AlF3),表示氟離子會較銫離子更優先與鋁離子產生鍵結。由於在OXD-7上鍍上氟化銫/鋁會產生一系列的化學變化,電子雲在離子鍵結的過程中會互相重疊,增加電子的傳輸機會,代表Al-F-Cs-OXD錯合物(Al-F-Cs-OXD complex)的產生會增進電子注入效率。另外在BCP與金上鍍上氟化銫/鋁作為對照組,由於BCP與金的分子結構沒有oxadiazole moiety,所以銫離子並不會與BCP產生反應,產生的氟化鋁數量會減少很多,更不會產生能增進電子注入效率的金屬錯合物。由以上的實驗可得知,若以含有oxadiazole moiety的衍生物材料作為有機發光元件的電子傳輸層,再配合氟化銫與鋁可提升有機發光元件的電子注入效率。
zh_TW
dc.description.abstractIn this thesis, synchrotron radiation photoemission was used to investigate the interfacial electronic structure at both electron and hole injection layers in organic light-emitting devices (OLEDs).
For hole injection layer, the molybdenum trioxide (MoO3) with high work function was employed. We found that upon annealing the MoO3 film the topotactic decomposition occurred to produce a large density of gap states, which was caused by increased the oxygen vacancies. These gap states not only provided the transition path for the carriers from the anode to the hole transporting layers (HTLs), but also induced a close alignment between the Fermi level and the HOMO state. In short, annealed MoO3 reduced the hole injection barrier, thereby enhancing the hole injection efficiency.
For electron injection layer, cesium fluoride (CsF) as electron injection layers was inserted between electron transporting materials (OXD-7) and aluminum. Cesium was found to attach the lone pairs of nitrogen, and interacted the oxadiazole moiety of OXD-7, thereby forming the Cs-OXD metal complex. The fluorine atoms bonded with the hydrogen of benzene moiety, giving rise to a weak ionic bond between cesium and fluorine. When aluminum was deposited onto cesium fluoride, the atoms lose electrons and became oxidized. The high polarity of aluminum ions attracted fluorine from the hydrogen of benzene moiety to form AlF3. The sequential chemical interaction among Al, F and Cs-OXD metal complex leaded to higher probability of electron transition and improved the electron injection efficiency.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:30:03Z (GMT). No. of bitstreams: 1
ntu-101-R99941062-1.pdf: 2931214 bytes, checksum: 95c9475ba591c6cdb038bc1fc10078d2 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝...I
Abstract...III
摘要...IV
第一章...1
1.1 有機發光元件(Organic Light Emitting Devices,OLEDs)介紹...1
1.2 光電子能譜常用物理名詞介紹...7
第二章...12
2.1 光電子能譜(Photoemission Spectroscopy,PES)介紹...12
2.2 同步輻射光源(Synchrotron Radiation)介紹...17
2.3 龍形光束線(Dragon Beamline)...21
2.4 實驗系統介紹...24
2.5 半球形能量分析儀(hemispherical energy analyser, HSA):...28
第三章...31
3.1 材料簡介...31
3.1.1 三氧化鉬在有機發光元件中所扮演的角色定位...31
3.1.2 TAPC在有機發光元件中所扮演的角色定位...34
3.2 利用加熱後的三氧化鉬與TAPC電洞傳輸層提升電洞注入效率...35
3.2.1 實驗流程...35
3.2.2 實驗結果與討論...37
第四章...47
4.1 材料簡介...47
4.1.1 OXD-7在有機發光元件中所扮演的角色定位...47
4.1.2 氟化銫在有機發光元件中所扮演的角色定位...49
4.2 利用OXD-7電子傳輸層與氟化銫電子注入層提升電子注入效率...51
4.2.1 使用中能量光電子能譜研究OXD-7與氟化銫介面的電子注入機制...51
4.2.2 使用低能量光電子能譜研究OXD-7與氟化銫介面的電子注入機制...60
4.2.3 使用表面電偶觀點研究OXD-7與氟化銫介面的電子注入機制...65
第五章...67
5.1 結論...67
5.2 未來展望...67
參考文獻...68
dc.language.isozh-TW
dc.subjectOXD-7zh_TW
dc.subject有機發光二極體zh_TW
dc.subject三氧化鉬zh_TW
dc.subject同步輻射zh_TW
dc.subject光電子發射能譜zh_TW
dc.subjectsynchrotron radiationen
dc.subjectOLEDen
dc.subjectmolybdenum trioxideen
dc.subjectOXD-7en
dc.subjectphotoemissionen
dc.title利用同步輻射光研究有機發光二極體載子注入層之電子結構與介面分析zh_TW
dc.titleInvestigation of electronic structures and interfacial chemistries of carrier injection layers in organic light-emitting devices via synchrotron radiation photoemission spectroscopyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee皮敦文(Tun-Wen Pi),陳美杏(Mei-Hsin Chen)
dc.subject.keyword有機發光二極體,三氧化鉬,OXD-7,光電子發射能譜,同步輻射,zh_TW
dc.subject.keywordOLED,molybdenum trioxide,OXD-7,photoemission,synchrotron radiation,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved