Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝學真(Hsyue-Jen Hsieh)
dc.contributor.authorYi-Hung Chouen
dc.contributor.author周奕宏zh_TW
dc.date.accessioned2021-06-16T23:29:55Z-
dc.date.available2017-08-28
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-07-29
dc.identifier.citation1. 苑乃義, 幾丁聚醣、硫酸軟骨素與麩胺酸複合生醫基材之製程探討、性質改良與應用. 國立台灣大學化學工程學研究所博士論文, 2009.
2. R. Langer and J.P. Vacanti, Tissue Engineering. Science, 1993, 260(5110): 920-926.
3. D.W. Fawcett and J. Heuser, Cell Image Library number:10954. The Cell 1981, 2nd edition.
4. Nelson and Cox, Lehninger principles of biochemistry. Freeman Co., 2008.
5. T. Sun, S. Jackson, J.W. Haycock and S. MacNeil, Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. Journal of Biotechnology, 2006, 122(3): 372-381.
6. A.M. Clyne, Thermal Processing of Tissue Engineering Scaffolds. Journal of Heat Transfer-Transactions of the ASME, 2011, 133(3).
7. A.S. Curtis, and Wilkinson, C. D., Reactions of cells to topography. Journal of Biomaterials Science, Polymer Edition, 1998, 9: 1313-1329.
8. A. Formhals, Process and apparatus for preparing artificial threads. US Patent, 1934: 1975504.
9. A. Formhals, Method and apparatus for spinning. US Patent, 1939: 2160962.
10. A. Formhals, Artificial thread and method of producing same. US Patent, 1940: 2187306.
11. G. Taylor, Disintegration of Water Drops in an Electric Field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280(1382): 383-397.
12. G. Taylor, The Coalescence of Closely Spaced Drops when they are at Different Electric Potentials. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1968, 306(1487): 423-434.
13. L. Rayleigh, On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine 1882, 14: 184-186.
14. J. Zeleny, The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Physical Review, 1914, 3(2): 69.
15. B.S.H. Christian Burger, Benjamin Chu, NANOFIBROUSMATERIALS AND THEIR APPLICATIONS. Annual Reviews, 2006, 36: 333-368.
16. H. Matsumoto, H. Yako, M. Minagawa and A. Tanioka, Characterization of chitosan nanofiber fabric by electrospray deposition: Electrokinetic and adsorption behavior. Journal of Colloid and Interface Science, 2007, 310(2): 678-681.
17. S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek, Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005, 46(10): 3372-3384.
18. J. Doshi and D.H. Reneker, Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 1995, 35(2-3): 151-160.
19. H. Liu and Y.-L. Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(18): 2119-2129.
20. H. Seo, H. Matsumoto, S. Hara, M. Minagawa, A. Tanioka, H. Yako, Y. Yamagata and K. Inoue, Preparation of polysaccharide nanofiber fabrics by electrospray deposition: Additive effects of poly(ethylene oxide). Polymer Journal, 2005, 37(6): 391-398.
21. J.M. Deitzel, J. Kleinmeyer, D. Harris and N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1): 261-272.
22. S. Warner, A. Fowler, M. Jaffe, P. Patra, S. Ugbolue, J. Coates and C. Subramanian, Cost Effective Nanofiber Formation: Melt Electrospining. National Textile Center Report, 2005: Project No. F05-MD01.
23. W. Tomaszewski and M. Szadkowski, Investigation of Electrospinning with the Use of a Multi-jet Electrospinning Head. FIBRES & TEXTILES in Eastern Europe, 2005, 13: 22-26.
24. O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova and J. Chaloupek, A Method of nanofibers production from polymer solution using electrostatic spinning and a device for carrying out the method. CZ Patent, 2005: WO 2005024101.
25. D. Lukas, A. Sarkar and P. Pokorny, Self-organization of jets in electrospinning from free liquid surface: A generalized approach. Journal of Applied Physics, 2008, 103(8): 084309-084309-7.
26. W.E. Teo, R. Inai and S. Ramakrishna, Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials, 2011, 12(1): -.
27. Y.-Y. Wang, L.-X. Lu, Z.-Q. Feng, Z.-D. Xiao and N.-P. Huang, Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomedical Materials, 2010, 5(5): 054112.
28. Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15): 2223-2253.
29. K. Ohkawa, D.I. Cha, H. Kim, A. Nishida and H. Yamamoto, Electrospinning of chitosan. Macromolecular Rapid Communications, 2004, 25(18): 1600-1605.
30. X.Y. Geng, O.H. Kwon and J.H. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005, 26(27): 5427-5432.
31. K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee and W.H. Park, Electrospinning of polysaccharides for regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61(12): 1020-1032.
32. L. Ilium, Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research, 1998, 15(9): 1326-1331.
33. W. Amass, A. Amass and B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International, 1998, 47(2): 89-144.
34. R. Muzzarelli, V. Baldassarre, F. Conti, P. Ferrara, G. Biagini, G. Gazzanelli and V. Vasi, Biological activity of chitosan: ultrastructural study. Biomaterials, 1988, 9(3): 247-52.
35. M. Shirakura, K. Tanimoto, H. Eguchi, M. Miyauchi, H. Nakamura, K. Hiyama, E. Tanaka, T. Takata and K. Tanne, Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis. Biochem Biophys Res Commun, 2010, 393(4): 800-5.
36. P.R. Klokkevold, P. Subar, H. Fukayama and C.N. Bertolami, Effect of chitosan on lingual hemostasis in rabbits with platelet dysfunction induced by epoprostenol. Journal of Oral and Maxillofacial Surgery 1992, 50(1): 41-5.
37. R.A. Muzzarelli, C. Zucchini, P. Ilari, A. Pugnaloni, M. Mattioli Belmonte, G. Biagini and C. Castaldini, Osteoconductive properties of methylpyrrolidinone chitosan in an animal model. Biomaterials, 1993, 14(12): 925-9.
38. R.A.A. Muzzarelli, F. Tanfani, G. Scarpini and G. Laterza, The degree of acetylation of chitins by gas chromatography and infrared spectroscopy. Journal of Biochemical and Biophysical Methods, 1980, 2(5): 299-306.
39. H.J. Hsieh, P.H. Chen, T.Y. Kuo, F.H. Liu, Y.H. Hwang, M.H. Ho, D.M. Wang and J.Y. Lai, Use of dicarboxylic acids to improve and diversify the material properties of porous chitosan membranes. Journal of Agricultural and Food Chemistry, 2008, 56(19): 9015-9021.
40. A. Denuziere, D. Ferrier, O. Damour and A. Domard, Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials, 1998, 19(14): 1275-85.
41. J. Zaia, J.E. McClellan and C.E. Costello, Tandem mass spectrometric determination of the 4S/6S sulfation sequence in chondroitin sulfate oligosaccharides. Analytical Chemistry, 2001, 73(24): 6030-6039.
42. C.A. Street and D.M.W. Anderson, Refinement of structures previously proposed for gum arabic and other acacia gum exudates. Talanta, 1983, 30(11): 887-893.
43. A. Tiss, F. Carriere and R. Verger, Effects of Gum Arabic on Lipase Interfacial Binding and Activity. Analytical Biochemistry, 2001, 294(1): 36-43.
44. M. Dimonie, H.D. Schell, G. Hubca, M.A. Mateescu, C.G. Oprescu, S. Todireanu, O. Maior, J. Languri and M. Iosif, Synthesis of beaded polyvinyl-alcohol by suspension methanolysis of polyvinyl acetate - derivatization and some applications. Journal of Macromolecular Science-Chemistry, 1985, A22(5-7): 729-754.
45. J.W. Gilman, D.L. VanderHart and T. Kashiwagi, Thermal Decomposition Chemistry of Poly(vinyl alcohol). Fire and PoLymers II: Materials and Test for Hazard Prevention, 1994, ACS Symposium Series 599: 21-26.
46. K. Burczak, E. Gamian and A. Kochman, Long-term in vivo performance and biocompatibility of poly(vinyl alcohol) hydrogel macrocapsules for hybrid-type artificial pancreas. Biomaterials, 1996, 17(24): 2351-2356.
47. W. Paul and C.P. Sharma, Acetylsalicylic acid loaded poly(vinyl alcohol) hemodialysis membranes: effect of drug release on blood compatibility and permeability. Journal of Biomaterials Science, Polymer Edition, 1997, 8: 755-764.
48. W.Y. Chuang, T.H. Young, C.H. Yao and W.Y. Chiu, Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials, 1999, 20(16): 1479-1487.
49. H. Liu, F. Yao, Y. Zhou, K. Yao, D. Mei, L. Cui and Y. Cao, Porous Poly (DL-Lactic Acid) Modified Chitosan-Gelatin Scaffolds for Tissue Engineering. Journal of Biomaterials Applications, 2005, 19(4): 303-322.
50. A.M. Araujo, M.T. Neves, W.M. Azevedo, G.G. Oliveira, D.L. Ferreira, R.A.L. Coelho, E.A.P. Figueiredo and L.B. Carvalho, Polyvinyl alcohol-glutaraldehyde network as a support for protein immobilisation. Biotechnology Techniques, 1997, 11(2): 67-70.
51. J.D. Schiffman and C.L. Schauer, Cross-linking chitosan nanofibers. Biomacromolecules, 2007, 8(2): 594-601.
52. H. Homayoni, S.A.H. Ravandi and M. Valizadeh, Influence of the Molecular Weight of Chitosan on the Spinnability of Chitosan/Poly(vinyl alcohol) Blend Nanofibers. Journal of Applied Polymer Science, 2009, 113(4): 2507-2513.
53. L. Li and Y.-L. Hsieh, Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydrate Research, 2006, 341(3): 374-381.
54. Y.T. Jia, J. Gong, X.H. Gu, H.Y. Kim, J. Dong and X.Y. Shen, Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate Polymers, 2007, 67(3): 403-409.
55. S. Majumdar and B. Adhikari, Polyvinyl alcohol: A taste sensing material. Sensors and Actuators B-Chemical, 2006, 114: 747-755.
56. S.W. Cui, G.O. Phillips, B. Blackwell and J. Nikiforuk, Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUM(TM)): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUM(TM) arabic. Food Hydrocolloids, 2007, 21(3): 347-352.
57. S. Tripathi, G.K. Mehrotra and P.K. Dutta, Physicochemical and bioactivity of cross-linked chitosan-PVA film for food packaging applications. International Journal of Biological Macromolecules, 2009, 45(4): 372-376.
58. N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, T. Ngawhirunpat and P. Supaphol, Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 2010, 81(3): 675-680.
59. J.Z. Knaul, S.M. Hudson and K.A.M. Creber, Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(11): 1079-1094.
60. D.Z. Yang, Y. Jin, G.P. Ma, X.M. Chen, F.M. Lu and J. Nie, Fabrication and Characterization of Chitosan/PVA with Hydroxyapatite Biocomposite Nanoscaffolds. Journal of Applied Polymer Science, 2008, 110(6): 3328-3335.
61. J.P. Chen, G.Y. Chang and J.K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 313: 183-188
62. Z.K. Xu, X.J. Huang and D. Ge, Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. European Polymer Journal, 2007, 43(9): 3710-3718.
63. X.Y. Yuan, B. Duan, Y. Zhu, Y.Y. Zhang, X.L. Li, Y. Zhang and K.D. Yao, A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. European Polymer Journal, 2006, 42(9): 2013-2022.
64. J.P. Chen, G.Y. Chang and J.K. Chen, Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 313: 183-188.
65. Z.G. Chen, P.W. Wang, B. Wei, X.M. Mo and F.Z. Cui, Electrospun collagen-chitosan nanofiber: A biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomaterialia, 2010, 6(2): 372-382.
66. X.M. Mo, C. Huang, R. Chen, Q.F. Ke, Y. Morsi and K.H. Zhang, Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids and Surfaces B-Biointerfaces, 2011, 82(2): 307-315.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65207-
dc.description.abstract先前研究發現,幾丁聚醣/硫酸軟骨素形成之複合材料有利於骨細胞體外培養。此外,立體奈米纖維支架與體內胞外間質環境較相似,理論上有助於細胞貼附與生長。因此本研究主要目的為將幾丁聚醣/硫酸軟骨素/聚乙烯醇形成之複合材料以電紡絲法紡織成奈米級纖維。實驗嘗試使用之溶液總濃度分別為14 wt%、12 wt%、10 wt%,並依幾丁聚醣與聚乙烯醇比例,可分為1:1、2:1、3:1三種不同混合比例。實驗操作之電壓為15、20、25、30 kV四組變數,流量則為0.005 mL/min、0.0075 mL/min、0.01 mL/min三組,探討製程參數之效應。
本研究發現除了部分黏度過高與濃度過低之組別,大多數組別皆可順利電紡成絲。溶液的總濃度增加與聚乙烯醇的增加,可以得到型態較佳之纖維,直徑約為100 - 400 nm 。電壓與流量對纖維直徑並無明顯影響。當提高溶液中聚乙烯醇的比例,所得纖維的直徑會隨之變粗。根據FT-IR之結果可以看出硫酸軟骨素與幾丁聚醣間存在以硫酸基與胺基形成之共價鍵結;熱分析之結果得知聚乙烯醇與幾丁聚醣為物理性混合且無明顯分相現象。
於抗張強度測試中,薄膜交聯後其楊氏彈性係數由9.72±2.2 MPa升高為174.0±24.0 MPa。交聯前之最大拉伸應力為65.7±6.7 N/g,最大延展量為30.6±5.8%;經由戊二醛交聯過24小時的薄膜,其最大拉伸應力降低為35.0±1.1 N/g,最大延展量降為5.5±2.1%,可能因戊二醛交聯過度所致,此點尚待改進。然而仍須透過戊二醛交聯以穩定其結構,交聯後之組別,經過14天降解後其殘存重量為原本之70 %,而未交聯之組別其殘存重量僅有初始重量之50 %,證實利用戊二醛交聯可減緩電紡絲纖維之降解程度。總之,本研究成功的將幾丁聚醣/硫酸軟骨素/聚乙烯醇電紡絲成奈米纖維,並探討其製程之相關參數對纖維型態之影響,希冀未來可將此類纖維應用於組織工程相關領域。
zh_TW
dc.description.abstractPrevious researches indicate that chitosan/chondroitin sulfate composite materials benefit the in vitro proliferation of bone cells. Besides, 3D nanofibrous scaffold is similar to the extra cellular matrix , which may help cell attachment and proliferation. The aim of this research is to fabricate chitosan/chondroitin sulfate/polyvinyl alcohol composite nanofibers by electrospinning. In the experiments, the total concentration of solutions were 14, 12, and 10 wt%; the ratios of chitosan to polyvinyl alcohol were 1:1, 2:1 and 3:1. The voltages applied were 15, 20, 25, and 30 kV. The flow rates were 0.005, 0.0075, and 0.01 mL/min. The effects of these process parameters on the composite nanofibers were investigated.
According to the results, by increasing the total concentration of solutions and the ratio of polyvinyl alcohol, we could collect nanofibers with better morphology, the diameters of the fibers were 100-400 nm. The voltage applied and the flow rate had little effect on the diameter of fibers. When increasing the ratio of polyvinyl alcohol, the diameter of nanofibers also increased. According to FT-IR analysis, there’s covalent bonding between sulfate group of chondroitin sulfate and amide group of chitosan. The results of thermal analysis showed that chitosan and polyvinyl alcohol were physically blended.
In tensile strength test, the Young’s modules of electronspun mats (after cross-linked by glutaraldehyde for 24 hours) increased from 9.7±2.2 MPa to 174.0±24.0 MPa. But the maximum tensile stress decreased from 65.7±6.7 N/g to 35.0±1.1 N/g, also the maximum elongation decreased from 30.6±5.8 % to 5.5±2.1 %. However, the degradation rate of electrospun mats was fast, and thus cross-linking by glutaraldehyde was needed to stabilize the structure. After 14-day degradation in PBS, the remaining weight of crosslinked fiber was 70% of the original. The remaining weight of uncrosslinked was only 50% of the original, indicating that glutaraldehyde cross-linking treatment reduced the degradation of electrospun mats. In this research, chitosan/chondroitin sulfate/polyvinyl alcohol composite nanofibrous scaffold was successfully fabricated via electrospinnnig. The effects of various process parameters on the nanofibers were also investigated. It is expected that the materials can be applied in tissue engineering related areas.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:29:55Z (GMT). No. of bitstreams: 1
ntu-101-R98524055-1.pdf: 25698786 bytes, checksum: 3d25d4f42ae62a1f47fe2896c321f932 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XV
縮寫與符號說明 XVII
中英對照表 XIX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究組織架構 3
第二章 文獻回顧 5
2.1 組織工程 5
2.2 胞外間質 6
2.3 細胞支架 9
2.4 電紡絲 11
2.4.1 電紡絲原理 11
2.4.2 電紡絲工作參數 13
2.4.3 電紡絲裝置種類 18
2.4.4 電紡絲材料 22
2.4.5 幾丁聚醣之電紡絲 23
2.5 幾丁聚醣 25
2.6 硫酸軟骨素 26
2.7 其他天然多醣 28
2.8 聚乙烯醇 31
2.9 交聯劑 32
第三章 實驗藥品與方法 37
3.1 實驗材料 37
3.2 實驗儀器 38
3.3 實驗方法 39
3.3.1 幾丁聚醣/硫酸軟骨素/聚乙烯醇混合溶液配製 39
3.3.2 混合溶液性質分析 42
3.3.3 電紡絲法 43
3.3.4 電紡絲纖維之分析 44
第四章 實驗結果與討論 47
4.1 溶液性質分析 47
4.1.1 pH值 47
4.1.2 黏度 47
4.1.3 表面張力 50
4.2 電紡絲纖維分析 52
4.2.1 SEM觀察 52
4.2.2 纖維直徑統計 72
4.2.3 FT-IR 87
4.2.4 TGA & DSC 89
4.2.5 機械性質 – 抗張強度 91
4.2.6 降解測試 96
第五章 結論及未來研究方向 99
5.1 結論 99
5.2 未來研究方向 100
參考文獻 103
dc.language.isozh-TW
dc.subject硫酸軟骨素zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject支架zh_TW
dc.subject電紡絲zh_TW
dc.subject奈米纖維zh_TW
dc.subject聚乙烯醇zh_TW
dc.subjectScaffolden
dc.subjectChitosanen
dc.subjectChondroitin sulfateen
dc.subjectPolyvinyl alcoholen
dc.subjectNanofibersen
dc.subjectElectrospinningen
dc.title以電紡絲法製備幾丁聚醣/硫酸軟骨素/聚乙烯醇複合奈米纖維之研究zh_TW
dc.titleFabrication of Chitosan/Chondroitin Sulfate/Polyvinyl Alcohol Composite Nanofiber by Electrospinningen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何明樺(Ming-Hua Ho),謝子陽(Tzu-Yang Hsieh)
dc.subject.keyword電紡絲,幾丁聚醣,硫酸軟骨素,聚乙烯醇,奈米纖維,支架,zh_TW
dc.subject.keywordElectrospinning,Chitosan,Chondroitin sulfate,Polyvinyl alcohol,Nanofibers,Scaffold,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
25.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved