請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65206完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林惠雯(Hui-Wen Lin) | |
| dc.contributor.author | Chen-Shaun Hu | en |
| dc.contributor.author | 胡全燊 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:29:52Z | - |
| dc.date.available | 2012-08-09 | |
| dc.date.copyright | 2012-08-09 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | [1] M. Atiyah and I. Macdonald. Introduction to Commutative Algebra. Addison-
Wesley Publishing Company, 1969. [2] A. Borel. Linear Algebraic Groups. W.A. Benjamin, Inc., 1969. [3] A. Borel. Linear Algebraic Groups. Springer, GTM 162, 1999. [4] J. L. David Cox and H. Schenck. Toric Variety. American Mathematical Society, 2010. [5] W. Fulton. Intoduction to Toric Variety. 1993. [6] T. KANEYAMA. On Equvariant Vector Bundles On An Almost Homogeneous Variety. Nagoya Math. J. Vol. 57 (1975), 65-86, 1975. [7] T. Oda. Torus Embeddings and Application, Based on joint work with Katsuya Miyake. Tata Institute of Fundamental Research, 1978. [8] L. Qing. Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65206 | - |
| dc.description.abstract | 環面簇的相關研究一直在近代代數幾何中扮演著重要的角色,本篇論文所
要討論的主題為環面簇上加權射影束的扇形結構。事實上,我們已經知道如何 利用一套具有規律的計算方法得知環面簇上向量束或射影束的扇形結構。本篇 論文所要探討的就是如何適當地調整這樣的演算方法,以便用於計算環面簇上 加權射影束的扇形結構。 | zh_TW |
| dc.description.abstract | In this article, we study the structure of toric vector bundles and toric projective
bundles. By a suitable modification, we can generalize the fan construction of toric projective bundles to toric weighted projective bundles. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:29:52Z (GMT). No. of bitstreams: 1 ntu-101-R99221007-1.pdf: 477794 bytes, checksum: 3d9f33dbc1cfaad8d0b0dfea02be0c30 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝i
中文摘要iii Abstract iv Contents v 0 Introduction 1 1 A Brief Introduction of Toric Geometry 3 1.1 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Toric Splitting Theorem of Vector Bundles 8 2.1 Notation and Terminologies . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Toric Weighted Projective Bundles 20 3.1 Notations and Terminologies . . . . . . . . . . . . . . . . . . . . . . 20 3.2 The Splitting Theorem of Fans . . . . . . . . . . . . . . . . . . . . . 21 3.3 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Appendix 29 Bibliography 38 | |
| dc.language.iso | zh-TW | |
| dc.subject | 環面簇 | zh_TW |
| dc.subject | 向量束 | zh_TW |
| dc.subject | 射影束 | zh_TW |
| dc.subject | 加權射影束 | zh_TW |
| dc.subject | 扇形結構 | zh_TW |
| dc.subject | Projective Bundle | en |
| dc.subject | Toric Variety | en |
| dc.subject | Vector Bundle | en |
| dc.subject | Toric Weighted Projective Bundle | en |
| dc.subject | Fan Construction | en |
| dc.title | 環面簇上加權射影束的研究 | zh_TW |
| dc.title | Toric Weighted Projective Bundles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王金龍(Chin-Lung Wang),李元斌(Yuan-Pin Lee) | |
| dc.subject.keyword | 環面簇,向量束,射影束,加權射影束,扇形結構, | zh_TW |
| dc.subject.keyword | Toric Variety,Vector Bundle,Projective Bundle,Toric Weighted Projective Bundle,Fan Construction, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 466.6 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
