請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65205完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴桓青(Hwan-Ching Tai) | |
| dc.contributor.author | Shu-Wei Lin | en |
| dc.contributor.author | 林書煒 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:29:50Z | - |
| dc.date.available | 2021-02-26 | |
| dc.date.copyright | 2020-02-26 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-21 | |
| dc.identifier.citation | 1. Khalil, B., Morderer, D., Price, P.L., Liu, F., and Rossoll, W. (2018). mRNP assembly, axonal transport, and local translation in neurodegenerative diseases. Brain Research, 1693, 75-91.
2. Kiebler, M.A. and DesGroseillers, L. (2000). Molecular insights into mRNA transport and local translation in the mammalian nervous system. Neuron, 25, 19-28. 3. Miller, S., Yasuda, M., Coats, J.K., Jones, Y., Martone, M.E., and Mayford, M. (2002). Disruption of dendritic translation of CaMKIIα impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 36, 507-519. 4. Costa, C.J. and Willis, D.E. (2018). To the end of the line: axonal mRNA transport and local translation in health and neurodegenerative disease. Developmental Neurobiology, 78, 209-220. 5. Biesemann, C., Grønborg, M., Luquet, E., Wichert, S.P., Bernard, V., Bungers, S.R., Cooper, B., Varoqueaux, F., Li, L., and Byrne, J.A. (2014). Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. The EMBO Journal, 33, 157-170. 6. Agard, D.A. and Sedat, J.W. (1983). Three-dimensional architecture of a polytene nucleus. Nature, 302, 676-681. 7. Pearce, J. (2004). Sir charles scott sherrington (1857–1952) and the synapse. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 544-544. 8. Brodal, P. (2004). The central nervous system: structure and function (3rd ed.). Oxford: Oxford University Press. 9. Baumann, N. and Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871-927. 10. Del Bigio, M.R. (2010). Ependymal cells: biology and pathology. Acta Neuropathologica, 119, 55-73. 11. Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends in Neurosciences, 22, 208-215. 12. Wichert, S.P. (2009). Transcriptomic approaches in the brain at cell type resolution: Analysis of neuron-glia interaction in Plp1 and Cnp1 null-mutant mice (Doctoral dissertation, Heidelberg University, 2009). Universitätsbibliothek Heidelberg. 13. Drachman, D.A. (2005). Do we have brain to spare? Neurology, 64, 2004-2005. 14. Finger, S. (2001). Origins of neuroscience: a history of explorations into brain function. New York: Oxford University Press. 15. Ramon y Cajal, S. (1911). Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine. 16. Perea, G., Navarrete, M., and Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends in Neurosciences, 32, 421-431. 17. Halassa, M.M., Fellin, T., and Haydon, P.G. (2007). The tripartite synapse: roles for gliotransmission in health and disease. Trends in Molecular Medicine, 13, 54-63. 18. Hormuzdi, S.G., Filippov, M.A., Mitropoulou, G., Monyer, H., and Bruzzone, R. (2004). Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662, 113-137. 19. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Biochemistry, D.o., Jessell, M.B.T., Siegelbaum, S., and Hudspeth, A. (2000). Principles of neural science. New York: McGraw-hill. 20. Sherwood, L. (2015). Human physiology: from cells to systems (9th ed.). Massachusetts: Cengage. 21. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W., LaMantia, A., McNamara, J., and White, L. (2004). Neuroscience. Massachusetts: Sinauer Associates. 22. Maurer, K., and Maurer, U. (2003). Alzheimer: The Life of a Physician and the Career of a Disease. New York: Columbia University Press. 23. Vos, T., Allen, C., Arora, M., Barber, R.M., Bhutta, Z.A., Brown, A., Carter, A., Casey, D.C., Charlson, F.J., and Chen, A.Z. (2016). Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet, 388, 1545-1602. 24. Alzheimer’s Association. (2018). 2018 Alzheimer's disease facts and figures. Alzheimer's & Dementia, 14, 367-429. 25. Hebert, L.E., Weuve, J., Scherr, P.A., and Evans, D.A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80, 1778-1783. 26. Pini, L., Pievani, M., Bocchetta, M., Altomare, D., Bosco, P., Cavedo, E., Galluzzi, S., Marizzoni, M., and Frisoni, G.B. (2016). Brain atrophy in Alzheimer’s disease and aging. Ageing Research Reviews, 30, 25-48. 27. Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., and Cummings, J.L. (2015). Alzheimer's disease. Nature Reviews Disease Primers, 1, 15056. 28. Rohn, T.T. (2013). The triggering receptor expressed on myeloid cells 2:“TREM-ming” the inflammatory component associated with Alzheimer's disease. Oxidative Medicine and Cellular Longevity, 2013, 860959. 29. Olsson, F., Schmidt, S., Althoff, V., Munter, L.M., Jin, S., Rosqvist, S., Lendahl, U., Multhaup, G., and Lundkvist, J. (2014). Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions. Journal of Biological Chemistry, 289, 1540-1550. 30. Murpy, M. and LeVine III, H. (2010). Alzheimer’s disease and the β-amyloid peptide. Journal of Alzheimers’s Disease, 19, 311-323. 31. Marr, R.A., and Hafez, D.M. (2014). Amyloid-beta and Alzheimer’s disease: the role of neprilysin-2 in amyloid-beta clearance. Frontiers in Aging Neuroscience, 6, 187. 32. Heinbockel, T. (2014). Neurochemistry. Norderstedt: Books on Demand. 33. Dulin, F., Léveillé, F., Ortega, J.B., Mornon, J.P., Buisson, A., Callebaut, I., and Colloc'h, N. (2008). p3 peptide, a truncated form of Aβ devoid of synaptotoxic effect, does not assemble into soluble oligomers. FEBS Letters, 582, 1865-1870. 34. Nishimura, I., Yang, Y., and Lu, B. (2004). PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell, 116, 671-682. 35. Iqbal, K., Alonso, A.d.C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., and Rahman, A. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1739, 198-210. 36. Sarkar, S. (2018). Neurofibrillary tangles mediated human neuronal tauopathies: insights from fly models. Journal of Genetics, 97, 783-793. 37. Makin, S. (2018). The amyloid hypothesis on trial. Nature, 559, S4-S7. 38. Mehta, D., Jackson, R., Paul, G., Shi, J., and Sabbagh, M. (2017). Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opinion on Investigational Drugs, 26, 735-739. 39. Doody, R.S., Raman, R., Farlow, M., Iwatsubo, T., Vellas, B., Joffe, S., Kieburtz, K., He, F., Sun, X., and Thomas, R.G. (2013). A phase 3 trial of semagacestat for treatment of Alzheimer's disease. New England Journal of Medicine, 369, 341-350. 40. Egan, M.F., Kost, J., Tariot, P.N., Aisen, P.S., Cummings, J.L., Vellas, B., Sur, C., Mukai, Y., Voss, T., and Furtek, C. (2018). Randomized trial of verubecestat for mild-to-moderate Alzheimer’s disease. New England Journal of Medicine, 378, 1691-1703. 41. McCartney, M. (2015). Margaret McCartney: The' breakthrough' drug that's not been shown to help in Alzheimer's disease. BMJ, 351, h4064. 42. Sevigny, J., Chiao, P., Bussière, T., Weinreb, P.H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., and Ling, Y. (2016). The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature, 537, 50-56. 43. Huang, Y.M., Shen, J., and Zhao, H.L. (2019). Major clinical trials failed the amyloid hypothesis of Alzheimer's disease. Journal of the American Geriatrics Society, 67, 841-844. 44. Braak, H. and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239-259. 45. Brundin, P., Melki, R., and Kopito, R. (2010). Prion-like transmission of protein aggregates in neurodegenerative diseases. Nature Reviews Molecular Cell Biology, 11, 301-307. 46. Clavaguera, F., Bolmont, T., Crowther, R.A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A.K., Beibel, M., and Staufenbiel, M. (2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nature Cell Biology, 11, 909-913. 47. Domert, J., Rao, S.B., Agholme, L., Brorsson, A.C., Marcusson, J., Hallbeck, M., and Nath, S. (2014). Spreading of amyloid-β peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiology of Disease, 65, 82-92. 48. Jucker, M. and Walker, L.C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501, 45-51. 49. Watts, J.C. and Prusiner, S.B. (2018). β-amyloid prions and the pathobiology of Alzheimer’s disease. Cold Spring Harbor Perspectives in Medicine, 8, a023507. 50. Hebb, C.O. and Whittaker, V. (1958). Intracellular distributions of acetylcholine and choline acetylase. The Journal of Physiology, 142, 187-196. 51. Gray, E. and Whittaker, V. (1962). The isolation of nerve endings from brain: an electron microscopic study of cell fragments derived by homogenization and centrifugation. Journal of Anatomy, 96, 79. 52. Whittaker, V. (1968). The morphology of fractions of rat forebrain synaptosomes separated on continuous sucrose density gradients. Biochemical Journal, 106, 412. 53. Whittaker, V., Michaelson, I., and Kirkland, R.J.A. (1964). The separation of synaptic vesicles from nerve-ending particles (synaptosomes'). Biochemical Journal, 90, 293. 54. Whittaker, V. (1993). Thirty years of synaptosome research. Journal of Neurocytology, 22, 735-742. 55. Hollingsworth, E., McNeal, E., Burton, J., Williams, R., Daly, J., and Creveling, C. (1985). Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3': 5'-monophosphate-generating systems, receptors, and enzymes. Journal of Neuroscience, 5, 2240-2253. 56. Schwartz, R.D., Skolnick, P., Hollingsworth, E.B., and Paul, S.M. (1984). Barbiturate and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes. FEBS Letters, 175, 193-196. 57. Johnson, M.W., Chotiner, J.K., and Watson, J.B. (1997). Isolation and characterization of synaptoneurosomes from single rat hippocampal slices. Journal of Neuroscience Methods, 77, 151-156. 58. Di Marco, M., Shamsuddin, S., Razak, K.A., Aziz, A.A., Devaux, C., Borghi, E., Levy, L., and Sadun, C. (2010). Overview of the main methods used to combine proteins with nanosystems: absorption, bioconjugation, and encapsulation. International Journal of Nanomedicine, 5, 37. 59. Metz, B., Kersten, G.F., Hoogerhout, P., Brugghe, H.F., Timmermans, H.A., De Jong, A., Meiring, H., ten Hove, J., Hennink, W.E., and Crommelin, D.J. (2004). Identification of formaldehyde-induced modifications in proteins reactions with model peptides. Journal of Biological Chemistry, 279, 6235-6243. 60. Feldman, M.Y. (1973). Reactions of nucleic acids and nucleodroteins with formaldehyde. Progress in Nucleic Acid Research and Molecular Biology, 13, 1-49. 61. Hoffman, E.A., Frey, B.L., Smith, L.M., and Auble, D.T. (2015). Formaldehyde crosslinking: a tool for the study of chromatin complexes. Journal of Biological Chemistry, 290, 26404-26411. 62. Ongay, S., Langelaar‐Makkinje, M., Stoop, M.P., Liu, N., Overkleeft, H., Luider, T.M., Groothuis, G.M., and Bischoff, R. (2018). Cleavable crosslinkers as tissue fixation reagents for proteomic analysis. ChemBioChem, 19, 736-743. 63. Cuatrecasas, P. and Parikh, I. (1972). Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry, 11, 2291-2299. 64. Lomant, A.J. and Fairbanks, G. (1976). Chemical probes of extended biological structures: synthesis and properties of the cleavable protein cross-linking reagent [35S] dithiobis (succinimidyl propionate). Journal of Molecular Biology, 104, 243-261. 65. Staros, J.V. (1988). Membrane-impermeant crosslinking reagents: probes of the structure and dynamics of membrane proteins. Accounts of Chemical Research, 21, 435-441. 66. Xiang, C.C., Mezey, E., Chen, M., Key, S., Ma, L., and Brownstein, M.J. (2004). Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Research, 32, e185-e185. 67. Attar, M., Sharma, E., Li, S., Bryer, C., Cubitt, L., Broxholme, J., Lockstone, H., Kinchen, J., Simmons, A., and Piazza, P. (2018). A practical solution for preserving single cells for RNA sequencing. Scientific Reports, 8, 1-10. 68. Böck, G., Steinlein, P., and Huber, L.A. (1997). Cell biologists sort things out: analysis and purification of intracellular organelles by flow cytometry. Trends in Cell Biology, 7, 499-503. 69. Wolf, M.E. and Kapatos, G. (1989). Flow cytometric analysis and isolation of permeabilized dopamine nerve terminals from rat striatum. Journal of Neuroscience, 9, 106-114. 70. Wolf, M.E. and Kapatos, G. (1989). Flow cytometric analysis of rat striatal nerve terminals. Journal of Neuroscience, 9, 94-105. 71. Wolf, M., LeWitt, P., Bannon, M., Dragovic, L., and Kapatos, G. (1991). Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. Journal of Neurochemistry, 56, 1191-1200. 72. Wolf, M.E., Granneman, J.G., and Kapatos, G. (1991). Characterization of the distribution of Gαo in rat striatal synaptosomes and its colocalization with tyrosine hydroxylase. Synapse, 9, 66-74. 73. Wolf, M.E. and Kapatos, G. (1989). Stimulation of d2 dopamine receptors decreases intracellular calcium levels in rat anterior pituitary cells but not striatal synaptosomes: A flow cytometric study using indo‐1. Synapse, 4, 353-370. 74. Wolf, M.E., Zigmond, M.J., and Kapatos, G. (1989). Tyrosine hydroxylase content of residual striatal dopamine nerve terminals following 6‐hydroxydopamine administration: a flow cytometric study. Journal of Neurochemistry, 53, 879-885. 75. Dodd, P., Hardy, J., Oakley, A., Edwardson, J., Perry, E., and Delaunoy, J.P. (1981). A rapid method for preparing synaptosomes: comparison, with alternative procedures. Brain Research, 226, 107-118. 76. Gylys, K.H., Fein, J.A., and Cole, G.M. (2000). Quantitative characterization of crude synaptosomal fraction (P‐2) components by flow cytometry. Journal of Neuroscience Research, 61, 186-192. 77. Gylys, K.H., Fein, J.A., Yang, F., and Cole, G.M. (2004). Enrichment of presynaptic and postsynaptic markers by size‐based gating analysis of synaptosome preparations from rat and human cortex. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 60, 90-96. 78. Fein, J.A., Sokolow, S., Miller, C.A., Vinters, H.V., Yang, F., Cole, G.M., and Gylys, K.H. (2008). Co-localization of amyloid beta and tau pathology in Alzheimer's disease synaptosomes. The American Journal of Pathology, 172, 1683-1692. 79. Herzog, E., Nadrigny, F., Silm, K., Biesemann, C., Helling, I., Bersot, T., Steffens, H., Schwartzmann, R., Nägerl, U.V., and El Mestikawy, S. (2011). In vivo imaging of intersynaptic vesicle exchange using VGLUT1Venus knock-in mice. Journal of Neuroscience, 31, 15544-15559. 80. Hafner, A.S., Donlin-Asp, P.G., Leitch, B., Herzog, E., and Schuman, E.M. (2018). Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts. bioRxiv, 363184. 81. Doyle, M. and Kiebler, M.A. (2011). Mechanisms of dendritic mRNA transport and its role in synaptic tagging. The EMBO Journal, 30, 3540-3552. 82. Glock, C., Heumüller, M., and Schuman, E.M. (2017). mRNA transport & local translation in neurons. Current Opinion in Neurobiology, 45, 169-177. 83. Schuman, E.M. (1999). mRNA trafficking and local protein synthesis at the synapse. Neuron, 23, 645-648. 84. Steward, O. (1997). mRNA localization in neurons: a multipurpose mechanism? Neuron, 18, 9-12. 85. Sutton, M.A. and Schuman, E.M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127, 49-58. 86. Bagni, C., Mannucci, L., Dotti, C.G., and Amaldi, F. (2000). Chemical stimulation of synaptosomes modulates α-Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. Journal of Neuroscience, 20, RC76-RC76. 87. Chicurel, M., Terrian, D., and Potter, H. (1993). mRNA at the synapse: analysis of a synaptosomal preparation enriched in hippocampal dendritic spines. Journal of Neuroscience, 13, 4054-4063. 88. Néant-Fery, M., Pérès, E., Nasrallah, C., Kessner, M., Gribaudo, S., Greer, C., Didier, A., Trembleau, A., and Caillé, I. (2012). A role for dendritic translation of CaMKIIα mRNA in olfactory plasticity. PLOS ONE, 7, e40133. 89. Xu, J., Chen, Q., Zen, K., Zhang, C., and Zhang, Q. (2013). Synaptosomes secrete and uptake functionally active micro RNA s via exocytosis and endocytosis pathways. Journal of Neurochemistry, 124, 15-25. 90. Blanco, L., Bernad, A., Lázaro, J.M., Martín, G., Garmendia, C., and Salas, M. (1989). Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. Journal of Biological Chemistry, 264, 8935-8940. 91. Esteban, J.A., Salas, M., and Blanco, L. (1993). Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. Journal of Biological Chemistry, 268, 2719-2726. 92. Paez, J.G., Lin, M., Beroukhim, R., Lee, J.C., Zhao, X., Richter, D.J., Gabriel, S., Herman, P., Sasaki, H., and Altshuler, D. (2004). Genome coverage and sequence fidelity of ϕ29 polymerase‐based multiple strand displacement whole genome amplification. Nucleic Acids Research, 32, e71-e71. 93. Fechner, A.J. and McGovern, P.G. (2011). The state of the art of in vitro fertilization. Frontiers in Bioscience (Elite Edition), 3, 264-278. 94. Navarro, E., Serrano-Heras, G., Castaño, M., and Solera, J. (2015). Real-time PCR detection chemistry. Clinica Chimica Acta, 439, 231-250. 95. Smith, C.J. and Osborn, A.M. (2009). Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiology Ecology, 67, 6-20. 96. Kaszuba, M., Corbett, J., Watson, F.M., and Jones, A. (2010). High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 4439-4451. 97. Wang, B.Y. (2014). Analysis of synaptic tau protein localization by immunofluorescence microscopy and flow cytometry (Master thesis, National Taiwan University, 2014). National Digital Library of Theses and Dissertations in Taiwan. 98. Chen, H.T. (2015). Development of high-throughput flow cytometry for synaptosomes (Master thesis, National Taiwan University, 2015). National Digital Library of Theses and Dissertations in Taiwan. 99. Zou, Y.F. (2016). Analysis of synaptic Apolipoprotein E localization by immunofluorescence microscopy and flow cytometry (Master thesis, National Taiwan University, 2016). National Digital Library of Theses and Dissertations in Taiwan. 100. Jhou, J.F. (2017). The application of amine-reactive crosslinking reagents in synaptosome research (Master thesis, National Taiwan University, 2017). National Digital Library of Theses and Dissertations in Taiwan. 101. Huang, Y.L. (2018). Transcriptome analysis of mRNAs localized to synapses by highthroughput sequencing (Master thesis, National Taiwan University, 2018). National Digital Library of Theses and Dissertations in Taiwan. 102. Mitter, D., Reisinger, C., Hinz, B., Hollmann, S., Yelamanchili, S.V., Treiber‐Held, S., Ohm, T.G., Herrmann, A., and Ahnert‐Hilger, G. (2003). The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. Journal of Neurochemistry, 84, 35-42. 103. Wiedenmann, B. and Franke, W.W. (1985). Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 41, 1017-1028. 104. Sheng, M. (2001). The postsynaptic NMDA-receptor—PSD-95 signaling complex in excitatory synapses of the brain. Journal of Cell Science, 114, 1251. 105. Steward, O., Farris, S., Pirbhoy, P.S., Darnell, J., and Driesche, S.J.V. (2015). Localization and local translation of Arc/Arg3. 1 mRNA at synapses: some observations and paradoxes. Frontiers in Molecular Neuroscience, 7, 101. 106. Thomsen, R., Pallesen, J., Daugaard, T.F., Børglum, A.D., and Nielsen, A.L. (2013). Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia, 61, 1922-1937. 107. Boisvert, M.M., Erikson, G.A., Shokhirev, M.N., and Allen, N.J. (2018). The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Reports, 22, 269-285. 108. Cajigas, I.J., Tushev, G., Will, T.J., tom Dieck, S., Fuerst, N., and Schuman, E.M. (2012). The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron, 74, 453-466. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65205 | - |
| dc.description.abstract | 突觸的功能障礙被認為在許多神經性疾病的病理中扮演重大的角色,其中阿茲海默症(Alzheimer’s disease)是最常見的失智症,其主要特徵為β-類澱粉蛋白(amyloid beta,Aβ)的沉積斑塊和被過度磷酸化後的tau蛋白異常堆積形成的神經纖維糾結(neurofibrillary tangles,NFTs),導致神經突觸的損失,造成認知功能退化。近年來越來越多證據顯示,在正常的腦中,mRNA在突觸中的定域化(localization),使特定蛋白質能在突觸局部快速被轉譯,這樣的機制對突觸可塑性(synaptic plasticity)和記憶鞏固(memory consolidation)至關重要。然而,目前還沒有一套有力的方法來研究突觸中RNA的組成。
突觸神經體(Synaptoneurosome)是被使用來研究突觸功能的一種重要模型,它是由突觸終端被分離並重新閉合的顆粒,其仍保有大部分神經末梢的特徵功能。為了研究突觸的RNA組成,我們發展了一套能成功得到高純度突觸神經體的純化法,此方法的關鍵在於使用具有雙硫鍵結構的交聯試劑3,3’-二硫代二丙酸二(N-琥珀醯亞胺)酯(Dithiobis(succinimidyl propionate),DSP)進行可逆式的固定作用,實驗結果發現其可以避免傳統以甲醛固定造成突觸神經體聚集的現象,以DSP的固定為基礎,我們優化了對突觸神經體進行免疫染色的流程,並成功應用於流式細胞術(flow cytometry)的偵測及分選,最後根據流式細胞術測得之側向散射訊號作為顆粒大小的指標,加上對前後突觸的標誌蛋白進行染色而得的螢光訊號作為分選的三重條件,收集獲得高純度的突觸神經體以進行後續RNA的分析。 由於DSP分子中間為雙硫鍵結構,使用還原劑解開即可解開其固定效果,我們優化了DSP固定以及三(2-羧乙基)膦(tris(2-carboxyethyl)phosphine,TCEP)切割的反應條件,在分選得到高純度的突觸神經體後,再利用TCEP將DSP之雙硫鍵切斷,便能將突觸神經體裂解並從中萃取出含有多腺苷酸(polyadenylic acid)的RNA,再以定量聚合酶連鎖反應(quantitative polymerase chain reaction,qPCR)進行分析。我們在每次實驗中能夠回收數百萬個突觸神經體,並藉由qPCR確認了其中突觸RNA如Actb(beta-actin)和Arc(activity-regulated cytoskeleton-associated protein)的表現。 | zh_TW |
| dc.description.abstract | Synaptic dysfunction is thought to play important roles in the pathology of many neurological diseases. Alzheimer’s disease is the most common type of dementia. The pathological hallmarks of Alzheimer’s disease are the presence of the deposition of senile plaques which consist of beta-amyloid peptide and the neurofibrillary tangles composed of abnormal aggregates of hyperphosphorylated tau, which lead to the loss of synapses and the cognitive disorders. In normal brains, there has been increasing evidence showing that mRNAs localized at the synapses allow the rapid production of specific proteins through local translation, which critically contributes to synaptic plasticity and memory consolidation. However, there is no effective method to study the RNA composition of synapses.
Synaptoneurosomes have become one of the important model systems for studying synaptic functions, which are the detached-and-resealed synaptic terminals remaining most of the functional characteristics of nerve terminals. To study the RNA composition of the synapse, we devised a novel purification method for obtaining high-purity synaptoneurosomes. The key to this method is the use of the cross-linking reagent dithiobis(succinimidyl propionate) (DSP), which contains a disulfide linker to carry out the reversible fixation. Results showed that DSP helps circumvent the aggregation of synaptoneurosomes frequently induced by formaldehyde. Based on the DSP fixation, we optimized the protocols for the immunostaining of synaptoneurosomes and their application in flow cytometry and sorting. According to the side scatter signals measured with the flow cytometer as an indicator of particle size and the fluorescent signals obtained by immunostaining the presynaptic and postsynaptic marker proteins, we can collect highly purified synaptoneurosomes for subsequent RNA analysis. Owing to the disulfide structure in DSP, the fixation can be reversed by reducing agents. We optimized the reaction conditions of DSP fixation and Tris(2-carboxyethyl)phosphine (TCEP) cleavage. After sorting, we can unfix the purified synaptoneurosomes and extract poly (A)-containing RNAs for quantitative polymerase chain reaction (qPCR) analysis. In a typical experiment, we can recover several million synaptoneurosomes, and the presence of synaptic RNAs Actb and Arc are confirmed by qPCR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:29:50Z (GMT). No. of bitstreams: 1 ntu-109-R06223142-1.pdf: 5922096 bytes, checksum: f2e09dfe3ec6e9b41e8d475cce0f5eb5 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii Abstract iv 目錄 vi 圖目錄 x 表目錄 xii 縮寫表 xiii 第一章 緒論 1 1.1 研究目的 1 1.2 研究假說 2 1.3 研究架構 3 第二章 背景與文獻探討 5 2.1 腦細胞類型 5 2.2 突觸 7 2.3 突觸功能異常及阿茲海默症 10 2.4 突觸終端的分離純化 15 2.5 用於固定作用的交聯試劑 17 2.6 流式細胞術對突觸體的分析及分選 20 2.7 從突觸分離mRNA與定量聚合酶連鎖反應分析 22 2.8 界面電位 25 2.9 本實驗室之前人研究 26 第三章 實驗材料與方法 28 3.1 實驗材料 28 3.1.1 鼠腦 28 3.1.2 藥品與試劑 28 3.1.3 耗材與套組 29 3.1.4 一級抗體 30 3.1.5 二級抗體 30 3.1.6 定量聚合酶連鎖反應之引子及探針 31 3.1.7 緩衝液 31 3.2 實驗儀器 32 3.2.1 Zeiss Axio Observer Z1 32 3.2.2 BD FACSAria™ III Cell Sorter 33 3.2.3 CFX96 Touch™ Real-Time PCR Detection System 34 3.3 突觸神經體的製備 36 3.4 突觸體的製備 36 3.5 以APTES官能化玻璃底盤 37 3.6 DSP與PFA固定法之比較 37 3.6.1 以DSP固定突觸神經體 37 3.6.2 以PFA固定突觸神經體 37 3.7 優化DSP之切割效率 38 3.8 突觸神經體之免疫染色 38 3.9 以流式細胞儀分析並分選突觸神經體 40 3.10 分選後突觸神經體的回收 41 3.11 突觸神經體的WTA和qPCR分析 42 第四章 實驗結果與討論 43 4.1 突觸體和突觸神經體的比較 43 4.1.1 以流式細胞術判定樣品顆粒大小 43 4.1.2 以聚苯乙烯螢光標準微粒決定突觸(神經)體的顆粒大小 44 4.1.3 突觸(神經)體之雙重染色 45 4.2 以DSP和PFA固定的比較 49 4.2.1 DSP不會造成突觸神經體的異常聚集 49 4.2.2 以流式細胞術判定突觸神經體顆粒大小 51 4.3 DSP反應條件的優化 53 4.4 以qPCR檢驗TCEP對DSP的切割效果 57 4.5 螢光活化之突觸神經體分選術 59 4.5.1 突觸神經體分選條件的確立 59 4.5.2 重新以流式細胞儀分析分選之突觸神經體以檢驗純度 59 4.6 分選後突觸神經體的回收率計算 63 4.7 以qPCR檢驗分選之突觸神經體純度 64 第五章 結論 67 5.1 突觸神經體中有較高的後突觸比例 67 5.2 以DSP改進突觸神經體的固定 67 5.3 DSP固定與突觸神經體分選純化條件的確立 67 5.4 利用新穎的純化方法研究突觸神經體之轉錄組 68 參考文獻 69 附錄 82 1. 突觸神經體製備流程 82 2. 突觸體製備流程 84 3. APTES之塗佈流程 86 4. 4% PFA之製備 86 5. 突觸神經體在玻璃底盤的捕捉 87 6. DSP的反應條件測試 88 7. 突觸神經體之免疫染色 90 8. REPLI-g WTA single cell kit操作流程 92 8.1 反應試劑 92 8.2 反應溫度及時間設定 92 9. qPCR探針試驗之反應組成 93 10. qPCR之溫度循環設定 93 11. Raw data 94 11.1 以DSP和PFA固定後突觸神經體之界面電位測定 94 11.2 突觸神經體經試劑連續處理後在成像中之顆數統計 94 11.3 分選前後突觸神經體大小與其中前後突觸訊號比例的比較 95 11.4 離心條件測試 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 突觸神經體 | zh_TW |
| dc.subject | 3’-二硫代二丙酸二(N-琥珀醯亞胺)酯 | zh_TW |
| dc.subject | 流式細胞術 | zh_TW |
| dc.subject | 定量聚合?連鎖反應 | zh_TW |
| dc.subject | dithiobis(succinimidyl propionate) | en |
| dc.subject | synaptoneurosome | en |
| dc.subject | Alzheimer’s disease | en |
| dc.subject | flow cytometry | en |
| dc.subject | quantitative polymerase chain reaction | en |
| dc.title | 可裂解之交聯試劑在突觸神經體分選及RNA偵測之應用 | zh_TW |
| dc.title | The application of a cleavable crosslinking reagent in synaptoneurosome sorting and RNA detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃憲松(Hsien-Sung Huang),阮雪芬(Hsueh-Fen Juan),黃宣誠(Hsuan-Cheng Huang) | |
| dc.subject.keyword | 阿茲海默症,突觸神經體,3,3’-二硫代二丙酸二(N-琥珀醯亞胺)酯,流式細胞術,定量聚合?連鎖反應, | zh_TW |
| dc.subject.keyword | Alzheimer’s disease,synaptoneurosome,dithiobis(succinimidyl propionate),flow cytometry,quantitative polymerase chain reaction, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU202000436 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-02-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 5.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
