請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | |
| dc.contributor.author | Wei-Ting Lin | en |
| dc.contributor.author | 林威廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:29:41Z | - |
| dc.date.available | 2014-01-01 | |
| dc.date.copyright | 2012-07-31 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | [1] B. Behrens, P. Olle, and C. Schaffner¬¬¬¬, “Process simulation of hot stamping in consideration of transformation-induced stresses”, Numisheet, vol. 1-5, pp. 557-562, 2008.
[2] H. Engels, O. Schalmin, and C. Bollenhagen, “Controlling and monitoring of the hot-stamping process of boron-alloyed heat-treated steels”, New Development in Sheet Metal Forming Technology, pp. 135~150, 2006. [3] M. Merklein and J. Lechler, “Investigation of the thermal-techanical properties of hot stamping steels”, Journal of Materials Processing Technology, vol. 177, pp. 452-455, 2006. [4] M. Merklein, J. Lechler, and T. Stoehr, “Investigation on the thermal behavior of ultra high strength boron manganese steels within hot stamping”, Int J Mater Form, vol. 2, pp. 259-262, 2009. [5] P. Bosetti, S. Bruschi, T. Stoehr, J. Lechler, and M. Merklein, “Interlaboratory comparision for heat transfer coefficient Iidentification in hot stamping of high strength steels”, Int J Mater Form, vol. 3, Suppl 1, pp. 817-820, 2010. [6] M. Geiger, M. Merklein, and J. Lechler, “Determination of tribological conditions within hot stamping”, Prod. Eng. Res. Devel., vol. 2, pp. 269-276, 2008. [7] A. Yanagida and A. Azushima, “Evaluation of coefficients of friction in hot stamping by hot flat drawing test”, CIRP Annals – Manufacturing Technology, vol. 58, pp. 247-250, 2009. [8] A. Yanagida, T. Kurihara, and A. Azushima, “Development of tribo-simulator for hot stamping”, Journal of Materials Processing Technology, vol. 210, pp. 456-460. [9] H. Steinbeiss, H. So, T. Michelitsch, and H. Hoffmann, “Method for optimizing the cooling design of hot stamping tools”, Prod. Eng. Res. Devel., vol. 1, pp. 149-155, 2007. [10] H. Hoffmann, H. So, and H. Steinbeiss, “Design of hot stamping tools with cooling system”, Annals of the CIRP, vol. 56, pp. 269-272, 2007. [11] M. Naderi, V. Uthaisangsuk, U. Prahl, and W. Bleck, “A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels”, steel research int.,Metal Forming, vol. 79, pp. 77-84, 2008. [12] A. Tekkaya, H. Karbasian, W. Homberg, and M. Kleiner, “Thermo-mechanical coupled simulation of hot stamping components for process design”, Prod. Eng. Res. Devel., vol. 1, pp. 85-89, 2007. [13] H. Liu, J. Bao, Z. Xing, D. Zhang, B. Song, and C. Lei, “Modeling and FE simulation of quenchable high strength steels sheet metal hot forming process”, Journal of Materials Engineering and Performance, ASM International, JMEPEG DOI: 10.1007/s11665-010-9713-2, 2010. [14] Z.W. Xing, J. Bao, and Y.Y. Yang, “Numerical simulation of hot stamping of quenchable boron steel”, Materials Science and Engineering A, vol. 499, pp. 28-31, 2009. [15] H.H. Bok, M.G. Lee, H.D. Kim, and M.B. Moon, “Thermo-mechanical finite element analysis incorporating the temperature dependent stress-strain response of low alloy steel for practical application to the hot stamped part”, Met. Mater. Int, vol. 16, No.2, pp. 185-195, 2010. [16] K. Mori and Y. Okuda, “Tailor die quenching in hot stamping for producing ultra-high strength steel formed parts having strength distribution”, CIRP – Manufacturing Technology, vol. 59, pp. 291-294, 2010. [17] M. Naderi, L. Durrenberger, A. Molinari, and W. Bleck, “Constitutive relationships for 22MnB5 boron steel deformed isothermally at high temperatures”, Materials Science and Engineering, vol. 478, pp.130-139, 2008. [18] A. Shapiro, “Finite element modeling of hot stamping”, Steel Research International, vol. 80, pp.658-664, 2010. [19] M. Merklein, J. Lechler, and M. Geiger, “characterisation of the flow properties of the quenchenable ultra high strength steel 22MnB5”, CIRP Annals- Manufacturing Technology, vol. 55, pp. 229-232, 2006. [20] H.S. Son, H.G. Kim, and Y.C. Ho, “Formability evaluation for hot press formed part using coupled thermal-mechanical analysis”, Numisheet, pp. 593-597, 2008. [21] H.S. Liu, Z.W. Xing, J. Bao, and B.Y. Song, “Investigation of the hot-stamping process for advanced high-strength steel sheet by numerical simulation”, ASM International, vol. 19, pp. 325-334, 2010. [22] L. Zhang, G. Zhao and H. Li, “Numerical simulation investigation on the temperature field distribution and variations in hot stamping process”, Applied Mechanics and Materials, vol. 44-47, pp.992-996, 2011. [23] A. Turetta, “Investigation of thermal, mechanical and microstructural properties of quenchenable high strength steels in hot stamping operations”, Universita degli studi di Padova, 2008. [24] Y. Gao, D. Gao, Y. Deng, and W. Cao, “Hot forming analysis of car door bar for ultra high strength steel”, Advanced Materials Research, vol. 160-162, pp. 836-841, 2011. [25] J. Kondratiuk and P. Kuhn, “Tribological investigation on friction and wear behaviour of coatings for hot sheet metal forming”, Wear, vol. 270, pp. 839–849, 2011. [26] A. Azushima, K. Uda, and A. Yanagida, “Friction behavior of aluminum-coated 22MnB5 in hot stamping under dry and lubricated conditions”, Journal of Materials Processing Technology, vol. 212, pp. 1014-1021, 2012. [27] http://www.youtube.com/watch?v=LjWnaww4x0s&feature=player_embedded [28] J. Cui, C. Lei, Z. Xing, and C. Li, “Microstructure distribution and mechanical properties prediction of boron alloy during hot forming using FE simulation”, Materials Science and Engineering, vol. A535, pp. 241-251, 2012. [29] 侯佳緯, “熱沖壓成形技術之冷卻系統設計與製程參數研究”, 台灣大學碩士論文, pp. 78-90, 2011. [30] H. So and H. Hoffmann, “Design of hot stamping tools and blanking Strategies of ultra high strength steels”, Springer Proceedings in Physics, vol. 124, pp. 315-325, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65202 | - |
| dc.description.abstract | 由於國際間日益重視環保節能與提高汽車安全性,如何有效提升汽車結構強度並減輕車體重量,已成為各大車廠追求之目標。目前各大車廠多採用先進高強度鋼板(Advanced High Strength Steel, AHSS)作為結構件之用料,而為了開發更高強度之汽車構件,產學研各界近年來皆均致力於發展熱沖壓製程,以求強度達到1200MPa以上之結構件,增加汽車安全性。本論文即是針對熱沖壓製程,探討有限元素法之分析模式以及各製程參數對熱沖壓成形之影響。
本論文首先針對熱沖壓製程進行文獻之蒐集,了解目前熱沖壓製程之發展與研究現況,並歸納各文獻所使用之板材與模具材料性質。隨後針對熱沖壓製程進行有限元素法分析模式之建立,包含板材出爐空冷熱傳分析、板材熱沖壓成形分析,以及板材模內淬火分析等,藉由有限元素法分析可掌握各階段板材與模具之溫度歷程,並確保板材淬火後之金相組織達到強度要求。同時本研究亦進行U型模具熱沖壓循環製程實驗,探討循環製程下板材與模具之溫度變化,以及驗證熱沖壓限元素法模擬之準確性。 此外,本論文亦以汽車結構件A柱作為實際載具進行熱沖壓製程之研究,藉由前述所建立之熱沖壓限元素法分析模式進行A柱之製程分析,探討兼顧冷卻效率與加工成本之較佳化冷卻系統配置方式,並分析不同製程參數對於板材成形性與淬火特性之影響。 本論文所建立之熱沖壓分析模式已由U型模具循環熱沖壓實驗進行驗證,實驗所得之板材與模具溫度歷程與模擬相符,可將此分析模式應用於實際熱沖壓構件之量產製程設計,提升業界於熱沖壓成形領域之製程技術。 | zh_TW |
| dc.description.abstract | Due to the demand for fuel consumption reduction and automobile safety improvement, the automobile industry takes a lot of efforts to increase vehicle structural strength and decrease its body weight effectively. One way to achieve these targets is to use advanced high strength steels. However, the formability and shape controllability are the two main problems that are difficult to overcome. Another method is to use the hot forming process, which would result in better formability and less springback effects. Therefore, the latter method has become more popularly applied in the automotive industry.
This thesis focuses on the hot forming studies, investigating the latest developments in the hot forming process and related material properties. In order to employ the finite element analysis to explore the hot forming process, this thesis set up a simulation model to examine the temperature history of blank and tools in the hot forming process, which includes hot blank air cooling, hot forming, and quenching. To validate the accuracy of the finite element analysis, U-shaped tools were designed for the cyclic hot forming experiments with thermal couples embedded in the die and punch to measure the tool temperature history for comparison. With the constructed finite element model, the hot forming process of the automobile structural parts A-pillar was also investigated in this thesis process, including cooling system design, process parameter analysis, and formability analysis. An optimum hot forming process for the A-pillar was then proposed. The research results obtained in this thesis could provide a reference for the future study on the hot forming process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:29:41Z (GMT). No. of bitstreams: 1 ntu-101-R99522535-1.pdf: 6111597 bytes, checksum: 03cac6b1e9b08cfff8fd36a8c78e9d5b (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 總目錄 I
圖目錄 V 表目錄 XI 第一章 緒論 1 1.1. 前言 1 1.2. 熱沖壓製程介紹 1 1.3. 研究動機與目的 5 1.4. 熱沖壓文獻回顧 5 1.5. 研究方法與步驟 8 1.6. 論文總覽 9 第二章 熱沖壓分析模式 11 2.1. 熱沖壓鋼板與模具之材料性質 11 2.1.1. 熱沖壓鋼板與模具之機械與熱學性質 11 2.1.2. 熱沖壓鋼板與模具之接觸介面性質 19 2.2. 高溫板材轉置空冷分析模式 23 2.2.1. 板材轉置流程 23 2.2.2. 模擬軟體介紹 24 2.2.3. 轉置空冷模擬參數 26 2.2.4. 轉置空冷模擬收斂性分析 28 2.2.5. 轉置空冷模擬結果與CAE軟體比較 29 2.3. 熱沖壓成形分析模式 30 2.3.1. 分析方法與流程 30 2.3.2. U型模具熱沖壓成形模擬參數 34 2.3.3. U型模具熱沖壓之收斂性分析 36 2.3.4. U型模具等效冷卻水熱傳係數探討 44 2.3.5. U型模具熱沖壓模擬結果 46 第三章 有限元素法模擬分析實驗驗證 49 3.1. 板材空冷溫度歷程驗證 49 3.2. U型模具熱沖壓模具溫度歷程驗證 52 3.3. U型模具熱沖壓板材厚度變化驗證 54 3.4. U型模具熱沖壓板材金相驗證 57 第四章 汽車結構件A柱之熱沖壓模具設計 63 4.1. 研究載具介紹 63 4.2. 模具分塊設計 64 4.3. 冷卻系統配置方式探討 67 4.3.1. 平板模具冷卻系統配置方式探討 67 4.3.2. A柱冷卻系統配置方式探討 73 4.4. A柱冷卻系統設計與熱傳分析 77 第五章 汽車結構件A柱之製程參數與成形性分析 83 5.1. 研究載具介紹 83 5.2. 模擬收斂性分析 85 5.3. 殼元素模面等效冷卻水熱傳係數探討 93 5.4. A柱熱沖壓成形製程參數探討 96 5.4.1. 板材轉置耗時對成形性之探討 96 5.4.2. 沖壓速度對成形性之探討 98 5.4.3. 摩擦係數對成形性之探討 100 5.5. A柱成形性分析 101 5.5.1. 皺褶趨勢預測 101 5.5.2. 破裂趨勢預測 103 5.5.3. 板材回彈量分析 105 5.6. A柱淬火分析 107 5.6.1. 循環下板材溫度歷程分析 107 5.6.2. 循環下板材冷卻速率分析 109 5.6.3. 循環下板材相變分析 110 第六章 結論 112 第七章 參考文獻 114 | |
| dc.language.iso | zh-TW | |
| dc.subject | 先進高強度鋼板 | zh_TW |
| dc.subject | 熱沖壓製程 | zh_TW |
| dc.subject | 熱沖壓限元素法分析模式 | zh_TW |
| dc.subject | 淬火分析 | zh_TW |
| dc.subject | 溫度歷程 | zh_TW |
| dc.subject | 汽車結構件A柱 | zh_TW |
| dc.subject | simulation model | en |
| dc.subject | advanced high strength steel | en |
| dc.subject | hot forming process | en |
| dc.subject | A-pillar | en |
| dc.subject | quench | en |
| dc.subject | temperature history | en |
| dc.title | 汽車結構件熱沖壓成形之製程參數分析 | zh_TW |
| dc.title | An Analysis of Process Parameters in the Hot Stamping of Automobile Structural Parts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 洪景華,林恆勝,黃庭彬 | |
| dc.subject.keyword | 先進高強度鋼板,熱沖壓製程,熱沖壓限元素法分析模式,淬火分析,溫度歷程,汽車結構件A柱, | zh_TW |
| dc.subject.keyword | advanced high strength steel,hot forming process,simulation model,quench,temperature history,A-pillar, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
