Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65199
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱繼輝(Kay-Hooi Khoo),陳玉如(Yu-Ju Chen)
dc.contributor.authorYi-Ju Chenen
dc.contributor.author陳誼如zh_TW
dc.date.accessioned2021-06-16T23:29:33Z-
dc.date.available2017-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-30
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65199-
dc.description.abstract硫基亞硝基化是藉由一氧化氮專一鍵結於半胱胺酸硫基上的一種可逆性後轉譯修飾,其可調節人類疾病中之許多相關訊息傳遞。相較於其它後轉譯修飾,因硫基亞硝基化含量極低與其不穩定性,使得於蛋白體中亞硝基化位置的鑑定與含量變化的定量極為困難,且方法仍受限制。在此研究中,我們發展一以質譜技術為核心的亞硝基化蛋白體策略,可以鑑定細胞或組織中蛋白質被亞硝基化的修飾位點及其定量分析。
  於論文第一部分,我們發展一不可逆烷化生物素標定策略結合質譜技術,可直接鑑定蛋白質上之硫基亞硝基化半胱胺酸位置。利用無內生性一氧化氮合成酶的COS-7細胞株,藉由不可逆烷化生物素標定策略,我們成功改善自由硫基包覆效率,以降低因雙硫鍵置換所造成的偽陽性訊號,及增加蛋白質酵素水解與亞硝基化胜肽的純化效率,提升以質譜技術對胜肽鑑定的專一性及靈敏度。
  於論文第二部分,我們開發一資訊輔助免標定定量蛋白體技術結合不可逆烷化生物素標定策略,針對人類癌症組織中的蛋白質被硫基亞硝基化修飾的特定位點進行定量分析。於三次獨立的純化亞硝基化胜肽實驗結果得知,此策略針對CC-M1人類大腸直腸癌細胞株提供了準確性(4%錯誤率)與定量再現性(33%相對標準偏差)。於人類大腸直腸癌組織中,我們分析了11位不同期別的大腸直腸癌腫瘤與鄰近正常組織之個人化亞硝基化蛋白體,並構築了亞硝基化與蛋白體之間的網絡藍圖,利用資訊輔助胜肽比對策略,我們可於11位不同時期的大腸直腸癌病人組織中成功定量到94個亞硝基化蛋白(含199條胜肽與174個亞硝基化特定位置),相較於腫瘤附近之正常組織,在6位以上的病人腫瘤組織中分別有20與80條亞硝基化胜肽具2倍與0.5倍程度變化,其中包含已知的thioredoxin (Cys73)與peroxiredoxin (Cys148),以及潛在性新穎標定癌症蛋白Annexin A4 (Cys108)皆在6位以上的病人腫瘤組織中大量表現,並以西方墨點法進一步驗證之。這些潛在標的蛋白皆與癌症與發炎反應有關,且可能透過蛋白質間的交互作用而受誘導型一氧化氮合成酶或thioredoxin調控而被亞硝基化,透過硫基亞硝基化的定量分析和其所造成的生理病理現象之關聯,可幫助我們進一步了解大腸直腸癌之癌症發生,並找尋潛在性治療標的以提升臨床標的用藥的可能性。
  於論文第三部分,我們進一步由生物資訊分析角度探討硫基亞硝基化之特性。利用Motif-X及SNOsite軟體比對一氧化氮刺激與癌症內生性亞硝基化胜肽,預測硫基亞硝基化在一級序列和二級結構上具高頻率分佈的結構偏好,結果顯示,硫基亞硝基化半胱胺酸可能位在酸鹼廣泛分佈之序列與α-螺旋上,且疏水性CxV/I/L motif則位在β-褶疊片段上。此外,於大腸直腸癌組織的分析結果中,有18個潛在內生性蛋白具有AxC motif,此結果與先前研究一致,推測其可能為thioredoxin經由trans-nitrosylation作用的標的蛋白。綜合以上結果得知,生物資訊分析可提供我們了解硫基亞硝基化由一級序列至二級結構上的分佈與特性,解開潛在性分子標的之特性。
zh_TW
dc.description.abstractS-nitrosylation, a reversible post-translational modification (PTM) involving the covalent interaction of nitric oxide (NO) with the thiol group of cysteine residues, plays important role to mediate NO-based signaling in human diseases. Compared to other PTM analysis, identification of the S-nitrosylation site and quantification of its change on the proteome scale is challenging due to its low abundance and labile nature. In this thesis, we developed a mass spectrometry-based S-nitrosoproteomic strategy for site-specific identification and quantification of S-nitrosoproteome in vitro and in vivo.
In the first part of thesis, we developed a S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion and enrichment efficiency for improved peptide identification using MS analyses. In the second part of thesis, we developed an integrated quantitative proteomic approach combing our S-alkylating biotin switch method and informatics-assisted label-free approach to site-specifically quantify the degree of endogenous S-nitrosylation on human cancerous tissues. This strategy provided accurate (4% error) and reproducible (33% relative S.D.) quantification based on three independently purified S-nitrosylated proteins from the CC-M1 colorectal cancer cell line. Using colorectal cancer (CRC) as a model, we constructed the personalized S-nitrosoproteomic atlas of paired tumor and adjacent normal tissues from 11 patients with different stages of CRC. Using informatics-assisted peptide alignment strategy, 199 S-nitrosylated peptides corresponding to 174 unique S-nitrosylation sites from 94 proteins were quantified in 11 human colorectal cancer patients from Dukes’ A to D stages. Compared to each adjacent normal tissue, 20 and 80 of these quantified S-nitrosylated peptides were up-regulated (≥ 2-fold) and down-regulated (≤ 0.5-fold) with high occurrence in more than 6 colorectal cancer patients, respectively. Some examples, including well-known S-nitrosylated targets, i.e. Cys73 on thioredoxin and Cys148 on peroxiredoxin-4, and potential novel S-nitrosylation site on Cys108 of Annexin A4, were up-regulated and further validated by western blot analysis. These potential targets were involved in cancer and inflammatory response and may be induced by iNOS- or thioredoxin-mediated nitrosylation through protein-protein interaction.
In the third part of thesis, we further applied Motif-X algorithm and SNOsite bioinformatics analyses to explore the potential consensus S-nitrosylation motifs. The results revealed motifs with acid-basic amino acids neighboring the central S-nitrosylated cysteine and prefer to locate on α-helix, contract to the hydrophobic motif CxV/I/L located on β-strand. 18 endogenous S-nitrosylated targets in colorectal cancer patients contained the AxC motif, which was consistent with previous literature and suggested as the potential substrate of thioredoxin via trans-nitrosylation. Taken together, these information analysis provides us to clarify the characteristics and distribution of S-nitrosylation from primary sequence to secondary structure. In conclusion, unraveling the property of potential molecular targets and degree of S-nitrosylation-based pathophysiology will allow the better understanding pro-tumorigenesis of colorectal cancer for S-nitrosylation and yield potential therapeutic targets to improve clinical outcomes.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:29:33Z (GMT). No. of bitstreams: 1
ntu-101-D96b46011-1.pdf: 7076513 bytes, checksum: 78281dcca9338720b9081307866b6fb6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 I
謝誌 …………………………………………………………………….………………II
中文摘要 IV
ABSTRACT VII
TABLE OF CONTENTS X
LIST OF FIGURES XVIII
LIST OF TABLES XXI
ABBREVIATIONS XXII
CHAPTER 1. INTRODUCTION 1
1.1 The history and impact of nitric oxide 1
1.2 NO-related modifications and the formation of S-nitrosylation 2
1.3 The significances of S-nitrosylation in biological systems 4
1.3.1 Cardiovascular disease 4
1.3.2 Neuronal degeneration 5
1.3.3 Immune and inflammation 6
1.3.4 Cancers 7
1.4 Characteristics of protein S-nitrosylation 9
1.5 Methodologies for studying the reversible protein S-nitrosylation 10
1.5.1 Strategies for analysis of protein S-nitrosylation 11
1.5.1.1 NO-based detection assays 11
1.5.1.2 MS-based technologies for direct identification of protein S-nitrosylation 12
1.5.1.3 Biotin switch method and its variations 14
1.5.1.3.1 Original biotin switch method 14
1.5.1.3.2 SNO site identification (SNOSID) 15
1.5.1.3.3 His-tag switch method by alkylation 16
1.5.1.4 Resin-based direct capture 18
1.5.1.5 Organomercury-based direct capture 19
1.5.2 Quantitative proteomic approaches 20
1.5.2.1 Gel-based fluorescence quantitation 21
1.5.2.2 MS level quantitation by stable isotope labeling 24
1.5.2.2.1 Cleavable isotope-coded affinity tagging 24
1.5.2.2.2 Isotopic S-nitrosothiol capture reagents 26
1.5.2.2.3 Stable isotope labeling by amino acids in cell culture 27
1.5.2.3 MS/MS level quantitation 28
1.5.2.3.1 Isobaric tags for relative and absolute quantification 28
1.5.2.3.2 Thiol-reactive multiplex tandem mass tag reagents 29
1.6 Thesis objectives 30
CHAPTER 2. MATERIALS AND METHODS 34
2.1 Chemicals and materials 34
2.2 Cell lines 35
2.3 Patients and specimen collection 35
2.4 Preparation of cellular extracts 36
2.4.1 Total lysate 36
2.4.2 Subcellular nuclear, cytosolic, and membrane protein extracts 37
2.5 SNAP-induced protein S-nitrosylation 38
2.5.1 In-vitro S-nitrosylation 38
2.5.2 In-vivo S-nitrosylation 39
2.6 S-Alkylating biotin switch method for S-nitrosylated proteins 39
2.7 Label-free quantitative strategy 40
2.8 Proteolysis of S-nitrosylated proteins by trypsin 41
2.9 Preparative SDS-PAGE fractionation 42
2.10 Purification of S-nitrosylated peptides by avidin affinity chromatography 43
2.11 LC-ESI-MS/MS analyses 44
2.12 Data processing and database search 45
2.13 Quantitative analysis by IDEAL-Q 46
2.14 Bioinformatic analyses 48
2.14.1 Protein annotation 48
2.14.2 Motif prediction 49
2.14.3 Topological analysis 49
2.14.4 Secondary structure and relative surface accessibility analysis 49
2.15 Western blot assay 50
2.15.1 Detection of total S-nitrosylated/biotinylated protein 50
2.15.2 Validation of potential S-nitrosylated proteins 50
2.16 Statistics analysis 52
CHAPTER 3. RESULTS 53
3.1 Methodology development for Site-specific identification of protein S-nitrosylation 53
3.1.1 Rationale for site-specific identification of the S-nitrosoproteome 53
3.1.2 An alternative blocking strategy using the S-alkylating reagents 54
3.1.3 Site-specific identification of S-nitrosylation in standard proteins 58
3.1.4 Optimization of MS-based condition and affinity purification using in-vitro S-nitrosylated cell lysate 60
3.1.5 Large-scale profiling of the S-nitrosoproteome in endothelial cells 63
3.1.6 Functional categorization and subcellular location of S-nitrosylated proteins 68
3.2 Label-free strategy for quantitation of endogenous S-nitrosoproteome in human colorectal cancer tissues 69
3.2.1 Simple Label-free quantitative strategy for site-specific quantitation of S-nitrosoproteome 70
3.2.1.1 Rationale of label-free quantitative procedure 70
3.2.1.2 Informatics-assisted peptide alignment and label-free quantitation 71
3.2.2 Evaluation of quantitation accuracy, dynamic range and reproducibility 73
3.2.3 Up-regulated expression of iNOS and elevated S-nitrosylation in colorectal cancer tissues 74
3.2.4 Increasing quantitation number of S-nitrosylated targets and sites in human colorectal cancer tissues by peptide alignment and cross-assignment strategy 75
3.2.5 Site-specific quantitation of endogenous S-nitrosoproteome in human colorectal cancer 76
3.2.6 Localization, functional category, and disease annotation of in-vivo S-nitrosylated targets 78
3.2.7 Validation of S-nitrosylation and protein expression level by Western blotting 79
3.3 Bioinformatic analyses for characteristics and consensus sequence of protein S-nitrosylation 84
3.3.1 Topological relationships between S-nitrosylation and integral membrane protein 84
3.3.1.1 SNAP/L-cysteine-stimulated S-nitrosylation in endothelial cells 84
3.3.1.2 Endogenous S-nitrosylation in human colorectal cancer 87
3.3.2 Prediction of consensus S-nitrosylation sequence based on the S-nitrosoproteome in SNAP/L-cysteine-stimulated endothelial cells and CRC tissues 88
3.3.2.1 Potential consensus sequence in SNAP/L-cysteine-stimulated endothelial cells by Motif-X analysis 89
3.3.2.2 Exploiting maximal dependence decomposition to identify S-nitrosylation site by constructing a web-based tool, SNOsite 91
3.3.2.3 Acid-basic and hydrophobic motif of endogenous S-nitrosylation in CRC tissues 93
3.3.3 The characteristics of S-nitrosylation sites on secondary structure 95
3.3.3.1 The distribution of in-vitro and in-vivo S-nitrosylation sites on secondary structure 95
3.3.3.2 The relationship between consensus sequence of S-nitrosylation and secondary structure 96
3.3.3.3 Relative surface accessibility of S-nitrosylation site and adjacent amino acids 97
CHAPTER 4. DISCUSSION 98
4.1 Reduced false-positive and false-negative identification of S-nitrosylation sites by S-alkylating biotin switch method 98
4.2 Potential S-nitrosylated targets may regulate the functions in endothelial cells and cancer 100
4.2.1 Cardiovascular system development and function 100
4.2.2 Cell growth, proliferation, and cell death 102
4.2.3 Stress response and others 103
4.2.4 Network of differentially expressed S-nitrosylated proteins and their roles in colorectal cancer 104
4.2.4.1 iNOS-mediated S-nitrosylation 104
4.2.4.2 Thioredoxin-mediated S-nitrosylation 106
4.2.4.3 Relationship between S-nitrosylation and cancer 107
4.2.4.4 Relationship between S-nitrosylation, immune response, and inflammation 109
4.3 S-nitrosylation on integral membrane proteins may face on cytosol or transnitrosylate by SNO-ALB 111
4.4 The potential consensus motifs for acid-basic and hydrophobic environment may present in in-vitro and in-vivo S-nitrosylation 113
CHAPTER 5. CONCLUSION AND FUTURE PERSPECTIVES 114
REFERENCES 117
FIGURES 142
TABLES 175
SUPPLEMENTARY INFORMATION 185
dc.language.isozh-TW
dc.subject人類大腸直腸癌組織zh_TW
dc.subject硫基亞硝基化zh_TW
dc.subject免標定定量策略zh_TW
dc.subject特定位點定量zh_TW
dc.subjectS-nitrosylationen
dc.subjectS-nitrosylation motifen
dc.subjectcolorectal canceren
dc.subjectsite-specific quantitationen
dc.subjectinformatics-assisted label-free approachen
dc.title開發硫基亞硝基化定量蛋白質體學之技術及其應用zh_TW
dc.titleExploring the S-nitrosoproteome by Site-specific Identification and Quantitation Strategyen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖文?(Wen-Feng Liaw),林俊宏(Chun-Hung Lin),裘正健(Jeng-Jiann Chiu),李宗夷(Tzong-Yi Lee)
dc.subject.keyword硫基亞硝基化,免標定定量策略,特定位點定量,人類大腸直腸癌組織,zh_TW
dc.subject.keywordS-nitrosylation,informatics-assisted label-free approach,site-specific quantitation,colorectal cancer,S-nitrosylation motif,en
dc.relation.page222
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved