Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65172
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華
dc.contributor.authorFei-I Lienen
dc.contributor.author連妃儀zh_TW
dc.date.accessioned2021-06-16T23:28:21Z-
dc.date.available2017-07-31
dc.date.copyright2012-08-28
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citationAdhikary, S., and Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature reviews Molecular cell biology 6, 635-645.
Bardos, J.I., and Ashcroft, M. (2004). Hypoxia-inducible factor-1 and oncogenic signalling. BioEssays : news and reviews in molecular, cellular and developmental biology 26, 262-269.
Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T., Potter, H., Lenoir, G., and Leder, P. (1983). The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34, 779-787.
Bernardi, R., Guernah, I., Jin, D., Grisendi, S., Alimonti, A., Teruya-Feldstein, J., Cordon-Cardo, C., Simon, M.C., Rafii, S., and Pandolfi, P.P. (2006). PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442, 779-785.
Bernardi, R., and Pandolfi, P.P. (2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nature reviews Molecular cell biology 8, 1006-1016.
Bernardi, R., Papa, A., and Pandolfi, P.P. (2008). Regulation of apoptosis by PML and the PML-NBs. Oncogene 27, 6299-6312.
Blackwood, E.M., Luscher, B., and Eisenman, R.N. (1992). Myc and Max associate in vivo. Genes & development 6, 71-80.
Blomberg, I., and Hoffmann, I. (1999). Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Molecular and cellular biology 19, 6183-6194.
Boddy, M.N., Duprez, E., Borden, K.L., and Freemont, P.S. (1997). Surface residue mutations of the PML RING finger domain alter the formation of nuclear matrix-associated PML bodies. Journal of cell science 110 ( Pt 18), 2197-2205.
Buschbeck, M., Uribesalgo, I., Ledl, A., Gutierrez, A., Minucci, S., Muller, S., and Di Croce, L. (2007). PML4 induces differentiation by Myc destabilization. Oncogene 26, 3415-3422.
Chelbi-Alix, M.K., Pelicano, L., Quignon, F., Koken, M.H., Venturini, L., Stadler, M., Pavlovic, J., Degos, L., and de The, H. (1995). Induction of the PML protein by interferons in normal and APL cells. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 9, 2027-2033.
Chelbi-Alix, M.K., Quignon, F., Pelicano, L., Koken, M.H., and de The, H. (1998). Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. Journal of virology 72, 1043-1051.
Chen, G.Q., Shi, X.G., Tang, W., Xiong, S.M., Zhu, J., Cai, X., Han, Z.G., Ni, J.H., Shi, G.Y., Jia, P.M., et al. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89, 3345-3353.
Cho, Y., Lee, I., Maul, G.G., and Yu, E. (1998). A novel nuclear substructure, ND10: distribution in normal and neoplastic human tissues. International journal of molecular medicine 1, 717-724.
Cockman, M.E., Masson, N., Mole, D.R., Jaakkola, P., Chang, G.W., Clifford, S.C., Maher, E.R., Pugh, C.W., Ratcliffe, P.J., and Maxwell, P.H. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. The Journal of biological chemistry 275, 25733-25741.
Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R.C., and Croce, C.M. (1982). Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America 79, 7824-7827.
de Nigris, F., Botti, C., Rossiello, R., Crimi, E., Sica, V., and Napoli, C. (2007). Cooperation between Myc and YY1 provides novel silencing transcriptional targets of alpha3beta1-integrin in tumour cells. Oncogene 26, 382-394.
de The, H., and Chen, Z. (2010). Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nature reviews Cancer 10, 775-783.
de The, H., Lavau, C., Marchio, A., Chomienne, C., Degos, L., and Dejean, A. (1991). The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675-684.
Dror, N., Rave-Harel, N., Burchert, A., Azriel, A., Tamura, T., Tailor, P., Neubauer, A., Ozato, K., and Levi, B.Z. (2007). Interferon regulatory factor-8 is indispensable for the expression of promyelocytic leukemia and the formation of nuclear bodies in myeloid cells. The Journal of biological chemistry 282, 5633-5640.
Eberhardy, S.R., and Farnham, P.J. (2002). Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. The Journal of biological chemistry 277, 40156-40162.
Fearon, E.R., and Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell 61, 759-767.
Feng, X.H., Liang, Y.Y., Liang, M., Zhai, W., and Lin, X. (2002). Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Molecular cell 9, 133-143.
Frank, S.R., Schroeder, M., Fernandez, P., Taubert, S., and Amati, B. (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes & development 15, 2069-2082.
Gaidano, G., Ballerini, P., Gong, J.Z., Inghirami, G., Neri, A., Newcomb, E.W., Magrath, I.T., Knowles, D.M., and Dalla-Favera, R. (1991). p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 88, 5413-5417.
Galaktionov, K., Chen, X., and Beach, D. (1996). Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511-517.
Grandori, C., Wu, K.J., Fernandez, P., Ngouenet, C., Grim, J., Clurman, B.E., Moser, M.J., Oshima, J., Russell, D.W., Swisshelm, K., et al. (2003). Werner syndrome protein limits MYC-induced cellular senescence. Genes & development 17, 1569-1574.
Gu, J., Tamura, M., Pankov, R., Danen, E.H., Takino, T., Matsumoto, K., and Yamada, K.M. (1999). Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. The Journal of cell biology 146, 389-403.
Gu, W., and Roeder, R.G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606.
Guo, A., Salomoni, P., Luo, J., Shih, A., Zhong, S., Gu, W., and Pandolfi, P.P. (2000). The function of PML in p53-dependent apoptosis. Nature cell biology 2, 730-736.
Gurrieri, C., Capodieci, P., Bernardi, R., Scaglioni, P.P., Nafa, K., Rush, L.J., Verbel, D.A., Cordon-Cardo, C., and Pandolfi, P.P. (2004). Loss of the tumor suppressor PML in human cancers of multiple histologic origins. Journal of the National Cancer Institute 96, 269-279.
Heuser, M., van der Kuip, H., Falini, B., Peschel, C., Huber, C., and Fischer, T. (1998). Induction of the pro-myelocytic leukaemia gene by type I and type II interferons. Mediators of inflammation 7, 319-325.
Ishov, A.M., Sotnikov, A.G., Negorev, D., Vladimirova, O.V., Neff, N., Kamitani, T., Yeh, E.T., Strauss, J.F., 3rd, and Maul, G.G. (1999). PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. The Journal of cell biology 147, 221-234.
Jeanne, M., Lallemand-Breitenbach, V., Ferhi, O., Koken, M., Le Bras, M., Duffort, S., Peres, L., Berthier, C., Soilihi, H., Raught, B., et al. (2010). PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer cell 18, 88-98.
Jensen, K., Shiels, C., and Freemont, P.S. (2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223-7233.
Kadaja, M., Isok-Paas, H., Laos, T., Ustav, E., and Ustav, M. (2009). Mechanism of genomic instability in cells infected with the high-risk human papillomaviruses. PLoS pathogens 5, e1000397.
Kasibhatla, S., Beere, H.M., Brunner, T., Echeverri, F., and Green, D.R. (2000). A 'non-canonical' DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Current biology : CB 10, 1205-1208.
Kim, T.K., Lee, J.S., Oh, S.Y., Jin, X., Choi, Y.J., Lee, T.H., Lee, E., Choi, Y.K., You, S., Chung, Y.G., et al. (2007). Direct transcriptional activation of promyelocytic leukemia protein by IFN regulatory factor 3 induces the p53-dependent growth inhibition of cancer cells. Cancer research 67, 11133-11140.
Kohl, N.E., Kanda, N., Schreck, R.R., Bruns, G., Latt, S.A., Gilbert, F., and Alt, F.W. (1983). Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35, 359-367.
Kusch, T., Florens, L., Macdonald, W.H., Swanson, S.K., Glaser, R.L., Yates, J.R., 3rd, Abmayr, S.M., Washburn, M.P., and Workman, J.L. (2004). Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306, 2084-2087.
Kuwayama, K., Matsuzaki, K., Mizobuchi, Y., Mure, H., Kitazato, K.T., Kageji, T., Nakao, M., and Nagahiro, S. (2009). Promyelocytic leukemia protein induces apoptosis due to caspase-8 activation via the repression of NFkappaB activation in glioblastoma. Neuro-oncology 11, 132-141.
Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., and de The, H. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nature cell biology 10, 547-555.
Lasorella, A., Noseda, M., Beyna, M., Yokota, Y., and Iavarone, A. (2000). Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592-598.
Lavau, C., Marchio, A., Fagioli, M., Jansen, J., Falini, B., Lebon, P., Grosveld, F., Pandolfi, P.P., Pelicci, P.G., and Dejean, A. (1995). The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 11, 871-876.
Li, W., Ferguson, B.J., Khaled, W.T., Tevendale, M., Stingl, J., Poli, V., Rich, T., Salomoni, P., and Watson, C.J. (2009). PML depletion disrupts normal mammary gland development and skews the composition of the mammary luminal cell progenitor pool. Proceedings of the National Academy of Sciences of the United States of America 106, 4725-4730.
Li, Z., Van Calcar, S., Qu, C., Cavenee, W.K., Zhang, M.Q., and Ren, B. (2003). A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America 100, 8164-8169.
Lim, J.H., Liu, Y., Reineke, E., and Kao, H.Y. (2011). Mitogen-activated protein kinase extracellular signal-regulated kinase 2 phosphorylates and promotes Pin1 protein-dependent promyelocytic leukemia protein turnover. The Journal of biological chemistry 286, 44403-44411.
Linardou, H., Briasoulis, E., Dahabreh, I.J., Mountzios, G., Papadimitriou, C., Papadopoulos, S., Bafaloukos, D., Kosmidis, P., and Murray, S. (2011). All about KRAS for clinical oncology practice: gene profile, clinical implications and laboratory recommendations for somatic mutational testing in colorectal cancer. Cancer treatment reviews 37, 221-233.
McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D., and Cole, M.D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363-374.
McMahon, S.B., Wood, M.A., and Cole, M.D. (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Molecular and cellular biology 20, 556-562.
Melnick, A., and Licht, J.D. (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167-3215.
Miltenberger, R.J., Sukow, K.A., and Farnham, P.J. (1995). An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Molecular and cellular biology 15, 2527-2535.
Narita, M., Nunez, S., Heard, E., Lin, A.W., Hearn, S.A., Spector, D.L., Hannon, G.J., and Lowe, S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703-716.
Nesbit, C.E., Tersak, J.M., and Prochownik, E.V. (1999). MYC oncogenes and human neoplastic disease. Oncogene 18, 3004-3016.
O'Hagan, R.C., Ohh, M., David, G., de Alboran, I.M., Alt, F.W., Kaelin, W.G., Jr., and DePinho, R.A. (2000). Myc-enhanced expression of Cul1 promotes ubiquitin-dependent proteolysis and cell cycle progression. Genes & development 14, 2185-2191.
Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P.R., Draetta, G.F., and Rolfe, M. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682-685.
Parker, R.C., Varmus, H.E., and Bishop, J.M. (1981). Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proceedings of the National Academy of Sciences of the United States of America 78, 5842-5846.
Pharoah, P.D., Easton, D.F., Stockton, D.L., Gayther, S., and Ponder, B.A. (1999). Survival in familial, BRCA1-associated, and BRCA2-associated epithelial ovarian cancer. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) Familial Ovarian Cancer Study Group. Cancer research 59, 868-871.
Ping, Z., Lim, R., Bashir, T., Pagano, M., and Guardavaccaro, D. (2012). APC/C (Cdh1) controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell Cycle 11, 1999-2005.
Reineke, E.L., and Kao, H.Y. (2009). Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. International journal of biological sciences 5, 366-376.
Roy, A.L., Carruthers, C., Gutjahr, T., and Roeder, R.G. (1993). Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365, 359-361.
Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P., and Pandolfi, P.P. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269-283.
Sexl, V., Diehl, J.A., Sherr, C.J., Ashmun, R., Beach, D., and Roussel, M.F. (1999). A rate limiting function of cdc25A for S phase entry inversely correlates with tyrosine dephosphorylation of Cdk2. Oncogene 18, 573-582.
Shen, Z.X., Chen, G.Q., Ni, J.H., Li, X.S., Xiong, S.M., Qiu, Q.Y., Zhu, J., Tang, W., Sun, G.L., Yang, K.Q., et al. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89, 3354-3360.
Sherr, C.J., and Roberts, J.M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development 13, 1501-1512.
Stadler, M., Chelbi-Alix, M.K., Koken, M.H., Venturini, L., Lee, C., Saib, A., Quignon, F., Pelicano, L., Guillemin, M.C., Schindler, C., et al. (1995). Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11, 2565-2573.
Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., Moroy, T., Bartek, J., Massague, J., Hanel, F., et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nature cell biology 3, 392-399.
Stone, J., de Lange, T., Ramsay, G., Jakobovits, E., Bishop, J.M., Varmus, H., and Lee, W. (1987). Definition of regions in human c-myc that are involved in transformation and nuclear localization. Molecular and cellular biology 7, 1697-1709.
Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G., Palvimo, J.J., and Hay, R.T. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nature cell biology 10, 538-546.
Trotman, L.C., Alimonti, A., Scaglioni, P.P., Koutcher, J.A., Cordon-Cardo, C., and Pandolfi, P.P. (2006). Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523-527.
Vernier, M., Bourdeau, V., Gaumont-Leclerc, M.F., Moiseeva, O., Begin, V., Saad, F., Mes-Masson, A.M., and Ferbeyre, G. (2011). Regulation of E2Fs and senescence by PML nuclear bodies. Genes & development 25, 41-50.
Wagner, A.J., Kokontis, J.M., and Hay, N. (1994). Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes & development 8, 2817-2830.
Weisshaar, S.R., Keusekotten, K., Krause, A., Horst, C., Springer, H.M., Gottsche, K., Dohmen, R.J., and Praefcke, G.J. (2008). Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS letters 582, 3174-3178.
Wolyniec, K., Shortt, J., de Stanchina, E., Levav-Cohen, Y., Alsheich-Bartok, O., Louria-Hayon, I., Corneille, V., Kumar, B., Woods, S.J., Opat, S., et al. (2012). E6AP ubiquitin ligase regulates PML-induced senescence in Myc-driven lymphomagenesis. Blood.
Wood, M.A., McMahon, S.B., and Cole, M.D. (2000). An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Molecular cell 5, 321-330.
Wu, S., Cetinkaya, C., Munoz-Alonso, M.J., von der Lehr, N., Bahram, F., Beuger, V., Eilers, M., Leon, J., and Larsson, L.G. (2003). Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351-360.
Yang, W., Shen, J., Wu, M., Arsura, M., FitzGerald, M., Suldan, Z., Kim, D.W., Hofmann, C.S., Pianetti, S., Romieu-Mourez, R., et al. (2001). Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688-1702.
Ye, X., Zerlanko, B., Zhang, R., Somaiah, N., Lipinski, M., Salomoni, P., and Adams, P.D. (2007). Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Molecular and cellular biology 27, 2452-2465.
Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J.J., May, P., and Oren, M. (1993). p53-mediated cell death: relationship to cell cycle control. Molecular and cellular biology 13, 1415-1423.
Yuan, W.C., Lee, Y.R., Huang, S.F., Lin, Y.M., Chen, T.Y., Chung, H.C., Tsai, C.H., Chen, H.Y., Chiang, C.T., Lai, C.K., et al. (2011). A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer cell 20, 214-228.
Zeller, K.I., Zhao, X., Lee, C.W., Chiu, K.P., Yao, F., Yustein, J.T., Ooi, H.S., Orlov, Y.L., Shahab, A., Yong, H.C., et al. (2006). Global mapping of c-Myc binding sites and target gene networks in human B cells. Proceedings of the National Academy of Sciences of the United States of America 103, 17834-17839.
Zhang, X.W., Yan, X.J., Zhou, Z.R., Yang, F.F., Wu, Z.Y., Sun, H.B., Liang, W.X., Song, A.X., Lallemand-Breitenbach, V., Jeanne, M., et al. (2010). Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328, 240-243.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65172-
dc.description.abstractThe promyelocytic leukemia protein (PML) was identified in acute promyelocytic leukemia, in which chromosome translocation generates oncogenic PML-RARα fusion protein. The PML protein is essential for the assembly of PML-nuclear bodies (PML-NBs) and is a tumor suppressor. Through lentivirus-based shRNAs screening, previous study in our laboratory identified nine oncogenes and one tumor suppressor as putative regulators of PML-NBs. Using RNA interference and overexpression strategies to validate their effects on PML expression, we confirmed that Myc, Max, and Src are negative regulators of PML. We next investigated the mechanism underlying Myc/Max-induced PML downregulation. We observed that Myc/Max suppress PML mRNA expression and repress PML promoter activity. We further identified that a 0.2 kb PML promoter segment is responsible for Myc/Max binding and Myc/Max-mediated transcription repression. Besides transcriptional repression, we found that Myc/Max also accelerate PML protein turnover by increasing PML ubiquitiantion. Interestingly, this effect is not due to upregulation of previously identified PML E3 ligases RNF4 and KLHL20, but is likely mediated by a Cullin 4A/B-family of E3 ligase. In conclusion, our study identifies Myc/Max as PML negative regulators and indicates that Myc/Max regulate PML through both transcriptional and post-translational mechanisms.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:28:21Z (GMT). No. of bitstreams: 1
ntu-101-R99b46012-1.pdf: 1288953 bytes, checksum: dc070307828a1d1edc3390c8ee78bb50 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents摘要………………………………………………………………………………….i
Abstract…..……………………………………………………………………..….ii
Introduction………………………………………………………………………..4
1 Tumorigenesis…………………………………………………………….......4
1.1 Tumor suppressor …………………………………………………..........…5
1.2 Oncoprotein…………………………………………………………………6
2 PML…………………………………………………………………………...7
2.1 PML function…………………………………………………………….....8
2.2 Transcriptional control of PML expression………………………………...9
2.3 Control of PML protein stability………………………………………......10
3 Myc…………………………………………………………………..……....11
3.1 Myc-mediated transcriptional regulation…………………...………….......12
3.2 The functional mechanisms of Myc in cell cycle progression……………..14
Preface……………………………………………………………………………..15
Materials and Methods……………………………………………………...…….16
Plasmid……………………………………………………………………….…16
Antibodies and reagents…………………………………………………...…....16
Cell culture and transient transfection……………………………………….…16
Western blot………………………………………………………………….....17
Establishment of tumor suppressor and oncogene knockdown cell lines by lentivirus
system………………………………………………………………………......18
RT/real-timePCR………………………………………………………….……19
Luciferase assay………………………………………………………………...19
ChIP-qPCR assay……………………………………………………………..…19
Cycloheximide chase assay……………………………………………….……..20
In vivo ubiquitination assay……………………………………………..…….…21
Transcription factor binding sites prediction tool……………………………......21
Results……………………………………………………………………………….22
Validation of the putative PML regulators identified from shRNA screening by
knockdown approach. ……………………………………………...………...….22
Validation of the putative PML regulators identified from shRNA screening by
overexpression approach. …………………………………………..……………23
Myc/Max overexpression downregulate PML mRNA expression …………...…24
Mapping PML promoter region involved in Myc/Max-mediated PML
downregulation.…………………………………….………………………….…24
Myc/Max are recruited to the 0.2 kb region of PML promoter…..………………25
The canonical E box and YY1 binding sites are not involved in Myc/Max-induced
PML repression. …………………………………………………………...…….25
Myc/Max increased PML protein turnover through promoting PML-I ubiquitination
in vivo. …………………………………………………………………………..26
Myc/Max cannot upregulate RNF4 and KLHL20, two known PML E3 ligases..27
Myc/Max promote PML-I ubiquitination through Cullin 4 in vivo..…………....27
Discussion…………………………………………………………………………...29
Table…………………………………………………………………………….…..33
Figures……………………………………………………………………………....34
Figure 1. Depletion of LATS1 fails to decrease PML protein level..…………...34
Figure 2. Increase of PML expression induced by shRNAs targeting SIK2, Myb,
Fos, Fes, E2F1, and PIM1.……………………………………………..………..35
Figure 3. Increase of PML expression induced by shRNAs targeting Src, Myc, and
Max..…………………………………………………………………………….36
Figure 4. Overexpression of SIK2, Myb, Fos, Fes, E2F1, or PIM1 fails to alter PML
expression..………………………………………………………………………37
Figure 5. Overexpression experiments demonstrate the ability of Myc/Max and Src
to downregulate PML protein..…………………………………………….....…38
Figure 6. Myc/Max overexpression downregulates PML mRNA expression…..39
Figure 7. Mapping PML promoter regions involved in Myc/Max-mediated PML
downregulation..…………………………………………………..………….....40
Figure 8. Myc/Max are recruited to the 0.2 kb region of PML promoter..……..41
Figure 9. The canonical E box and YY1 binding sites are not involved in Myc/Max-
induced PML repression..………………………………………………………42
Figure 10. Myc/Max increase PML protein turnover……..…………………....43
Figure 11. Myc/Max promote PML-I ubiquitination in vivo……….………......44
Figure 12. Myc/Max cannot upregulate RNF4 and KLHL20, two known PML E3
ligases………………………………………………………..……………...…..45
Figure 13. Myc/Max promote PML-I ubiquitination through Cullin 4 in vivo...46
Reference……………………………………………………………………….….47
dc.language.isoen
dc.subjectPMLzh_TW
dc.subjectMyc/Maxzh_TW
dc.subject轉錄調控zh_TW
dc.subject轉譯後蛋白質修飾zh_TW
dc.subjectPMLen
dc.subjectMyc/Maxen
dc.subjecttranscriptionen
dc.subjectpost-translational modificationen
dc.title探討Myc/Max調控PML之機制zh_TW
dc.titleThe Role of Myc/Max in PML Regulationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張久瑗,顏雪琪
dc.subject.keywordPML,Myc/Max,轉錄調控,轉譯後蛋白質修飾,zh_TW
dc.subject.keywordPML,Myc/Max,transcription,post-translational modification,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2012-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved