請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65118完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Tzu-Han Chang | en |
| dc.contributor.author | 張茲翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:25:54Z | - |
| dc.date.available | 2017-08-18 | |
| dc.date.copyright | 2012-08-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-31 | |
| dc.identifier.citation | Chapter 1
[1] R.H.Ritchie.Plasmalossesbyfastelectronsinthinfilms.Phys.Rev.,106:874--881, Jun 1957. [2] E. N. Economou. Surface plasmons in thin films. Phys. Rev., 182:539--554, Jun 1969. [3] Lukas Novotny and Niek van Hulst. Antennas for light. Nat Photon, 5(2):83--90, 02 2011. [4] Dmitri K. Gramotnev and Sergey I. Bozhevolnyi. Plasmonics beyond the diffraction limit. Nat Photon, 4(2):83--91, 02 2010. [5] JonA.Schuller,EdwardS.Barnard,WenshanCai,YoungChulJun,JustinS.White, and Mark L. Brongersma. Plasmonics for extreme light concentration and manipu- lation. Nat Mater, 9(3):193--204, 03 2010. [6] William L. Barnes, Alain Dereux, and Thomas W. Ebbesen. Surface plasmon sub- wavelength optics. Nature, 424(6950):824--830, 08 2003. [7] Ekmel Ozbay. Plasmonics: Merging photonics and electronics at nanoscale dimen- sions. Science, 311(5758):189--193, 2006. [8] Rashid Zia, Jon A. Schuller, Anu Chandran, and Mark L. Brongersma. Plasmonics: the next chip-scale technology. Materials Today, 9(7--8):20 -- 27, 2006. [9] H.A.Atwater.Thepromiseofplasmonics.ScientificAmerican,296(4):56--62,2007. [10] Thomas W. Ebbesen, Cyriaque Genet, and Sergey I. Bozhevolnyi. Surface-plasmon circuitry. Physics Today, 61(5):44--50, 2008. [11] Jeffrey N. Anker, W. Paige Hall, Olga Lyandres, Nilam C. Shah, Jing Zhao, and Richard P. Van Duyne. Biosensing with plasmonic nanosensors. Nat Mater, 7(6): 442--453, 06 2008. [12] Mark L. Brongersma and Vladimir M. Shalaev. The case for plasmonics. Science, 328(5977):440--441, 2010. [13] J. Heber. Surfing the wave. Nature, 461(7265):720--722, 2009. [14] R.R.Chance,A.Prock,andR.Silbey.MolecularFluorescenceandEnergyTransfer Near Interfaces, pages 1--65. John Wiley & Sons, Inc., 2007. [15] W. L. Barnes. Electromagnetic crystals for surface plasmon polaritons and the ex- traction of light from emissive devices. J. Lightwave Technol., 17(11):2170, Nov 1999. [16] J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93:036404, Jul 2004. [17] T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Torma. Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules. Phys. Rev. Lett., 103:053602, Jul 2009. [18] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85:3966-- 3969, Oct 2000. [19] Nicholas Fang, Hyesog Lee, Cheng Sun, and Xiang Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 308(5721):534--537, 2005. [20] H. Raether. Surface plasmons. Springer-Verlag Berlin, 1988. [21] S. C. Kitson, W. L. Barnes, and J. R. Sambles. Full photonic band gap for surface modes in the visible. Phys. Rev. Lett., 77:2670--2673, Sep 1996. [22] W. L. Barnes, S. C. Kitson, T. W. Preist, and J. R. Sambles. Photonic surfaces for surface-plasmon polaritons. J. Opt. Soc. Am. A, 14(7):1654--1661, Jul 1997. [23] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391(6668):667-- 669, 02 1998. [24] Angela De Leebeeck, L. K. Swaroop Kumar, Victoria de Lange, David Sinton, Reuven Gordon, and Alexandre G. Brolo. On-chip surface-based detection with nanohole arrays. Analytical Chemistry, 79(11):4094--4100, 2007. [25] Debashis Chanda, Kazuki Shigeta, Tu Truong, Eric Lui, Agustin Mihi, Matthew Schulmerich, Paul V. Braun, Rohit Bhargava, and John A. Rogers. Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat Commun, 2:479, 09 2011. [26] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia- Vidal, and T. W. Ebbesen. Beaming light from a subwavelength aperture. Science, 297(5582):820--822, 2002. [27] Aurelien Drezet, Cyriaque Genet, and Thomas W. Ebbesen. Miniature plasmonic wave plates. Phys. Rev. Lett., 101:043902, Jul 2008. [28] Nanfang Yu, Qi Jie Wang, Christian Pflugl, Laurent Diehl, Federico Capasso, Tadataka Edamura, Shinichi Furuta, Masamichi Yamanishi, and Hirofumi Kan. Semiconductor lasers with integrated plasmonic polarizers. Applied Physics Letters, 94(15):151101, 2009. [29] Werayut Srituravanich, Liang Pan, Yuan Wang, Cheng Sun, David B. Bogy, and Xiang Zhang. Flying plasmonic lens in the near field for high-speed nanolithography. Nat Nano, 3(12):733--737, 12 2008. [30] RashidZia,MarkD.Selker,PeterB.Catrysse,andMarkL.Brongersma.Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A, 21(12): 2442--2446, Dec 2004. [31] B. Sturman, E. Podivilov, and M. Gorkunov. Eigenmodes for metal-dielectric light- transmitting nanostructures. Phys. Rev. B, 76:125104, Sep 2007. [32] ŞukruEkinKocabaş,GeorgiosVeronis,DavidA.B.Miller,andShanhuiFan.Modal analysis and coupling in metal-insulator-metal waveguides. Phys. Rev. B, 79:035120, Jan 2009. [33] FuziYangandJ.R.Sambles.Resonanttransmissionofmicrowavesthroughanarrow metallic slit. Phys. Rev. Lett., 89:063901, Jul 2002. [34] F.J.Garcia-Vidal,H.J.Lezec,T.W.Ebbesen,andL.Martin-Moreno.Multiplepaths to enhance optical transmission through a single subwavelength slit. Phys. Rev. Lett., 90:213901, May 2003. [35] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. Nonresonant en- hancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Phys. Rev. B, 78:153111, Oct 2008. [36] Young Chul Jun, Ragip Pala, and Mark L. Brongersma. Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits†. The Journal of Physical Chemistry C, 114(16):7269--7273, 2010. [37] Zongfu Yu, Georgios Veronis, Shanhui Fan, and Mark L. Brongersma. Design of midinfrared photodetectors enhanced by surface plasmons on grating structures. Ap- plied Physics Letters, 89(15):151116, 2006. [38] Pieter Neutens, Pol Van Dorpe, Iwijn De Vlaminck, Liesbet Lagae, and Gustaaf Borghs. Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photon, 3(5):283--286, 05 2009. [39] Georgios Veronis, Zongfu Yu, Sukru Ekin Kocabas, David A. B. Miller, Mark L. Brongersma, and Shanhui Fan. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chin. Opt. Lett., 7(4):302--308, Apr 2009. [40] Amir Hosseini and Yehia Massoud. Nanoscale surface plasmon based resonator using rectangular geometry. Applied Physics Letters, 90(18):181102, 2007. [41] Yousuke Matsuzaki, Toshihiro Okamoto, Masanobu Haraguchi, Masuo Fukui, and Masatoshi Nakagaki. Characteristics of gap plasmon waveguide with stub structures. Opt. Express, 16(21):16314--16325, Oct 2008. [42] Wenshan Cai, Justin S. White, and Mark L. Brongersma. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Letters, 9(12):4403--4411, 2009. PMID: 19827771. Chapter 2 [1] C. Kittel and P. McEuen. Introduction to solid state physics, volume 7. Wiley New York, 1976. [2] H. Raether. Surface plasmons. Springer-Verlag Berlin, 1988. [3] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6:4370--4379, Dec 1972. [4] Surbhi Lal, Stephan Link, and Naomi J. Halas. Nano-optics from sensing to waveg- uiding. Nat Photon, 1(11):641--648, 11 2007. [5] Stefan A. Maier and Harry A. Atwater. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics, 98(1):011101, 2005. [6] J. J. Burke, G. I. Stegeman, and T. Tamir. Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B, 33:5186--5201, Apr 1986. [7] Jonathan Hu and Curtis R. Menyuk. Understanding leaky modes: slab waveguide revisited. Adv. Opt. Photon., 1(1):58--106, Jan 2009. [8] E. N. Economou. Surface plasmons in thin films. Phys. Rev., 182:539--554, Jun 1969. [9] RashidZia,MarkD.Selker,PeterB.Catrysse,andMarkL.Brongersma.Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A, 21(12): 2442--2446, Dec 2004. [10] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman. Plasmon slot waveg- uides: Towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B, 73:035407, Jan 2006. [11] Dror Sarid. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett., 47:1927--1930, Dec 1981. [12] ThomasNikolajsen,KristjanLeosson,IldarSalakhutdinov,andSergeyI.Bozhevol- nyi. Polymer-based surface-plasmon-polariton stripe waveguides at telecommuni- cation wavelengths. Applied Physics Letters, 82(5):668--670, 2003. [13] YangHyunJoo,MyoungJinJung,JaewoongYoon,SeokHoSong,HyongSikWon, Suntak Park, and Jung Jin Ju. Long-range surface plasmon polaritons on asymmetric double-electrode structures. Applied Physics Letters, 92(16):161103, 2008. Chapter 3 [1] X.D.Hoa,M.Martin,A.Jimenez,J.Beauvais,P.Charette,A.Kirk,andM.Tabrizian. Fabrication and characterization of patterned immobilization of quantum dots on metallic nano-gratings. Biosensors and Bioelectronics, 24(4):970 -- 975, 2008. [2] C Symonds, C Bonnand, J C Plenet, A Brehier, R Parashkov, J S Lauret, E Deleporte, and J Bellessa. Particularities of surface plasmon--exciton strong coupling with large rabi splitting. New Journal of Physics, 10(6):065017, 2008. [3] J Gomez Rivas, G Vecchi, and V Giannini. Surface plasmon polariton-mediated en- hancement of the emission of dye molecules on metallic gratings. New Journal of Physics, 10(10):105007, 2008. [4] PiersAndrewandWilliamL.Barnes.Molecularfluorescenceabovemetallicgratings. Phys. Rev. B, 64:125405, Sep 2001. [5] G.K. Bennig. Atomic force microscope and method for imaging surfaces with atomic resolution, February 9 1988. US Patent 4,724,318. [6] M. Von Ardenne. Das elektronen-rastermikroskop. Zeitschrift fur Physik A Hadrons and Nuclei, 109(9):553--572, 1938. Chapter 4 [1] K L Lai, M H Hon, and I C Leu. Pattern formation on polymer resist by solvent- assisted nanoimprinting with pdms mold as a solvent transport medium. Journal of Micromechanics and Microengineering, 21(7):075013, 2011. [2] P. B. Johnson and R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6:4370--4379, Dec 1972. [3] M. W. Klein, T. Tritschler, M. Wegener, and S. Linden. Lineshape of harmonic gen- eration by metallic nanoparticles and metallic photonic crystal slabs. Phys. Rev. B, 72:115113, Sep 2005. [4] Amitabh Ghoshal and Pieter G. Kik. Theory and simulation of surface plasmon exci- tation using resonant metal nanoparticle arrays. Journal of Applied Physics, 103(11): 113111, 2008. [5] U.FANO.Thetheoryofanomalousdiffractiongratingsandofquasi-stationarywaves on metallic surfaces (sommerfeld's waves). J. Opt. Soc. Am., 31(3):213--222, Mar 1941. [6] A. Hessel and A. A. Oliner. A new theory of wood's anomalies on optical gratings. Appl. Opt., 4(10):1275--1297, Oct 1965. Chapter 5 [1] RandolphKirchainandLionelKimerling.Aroadmapfornanophotonics.NatPhoton, 1(6):303--305, 06 2007. [2] C. Garcia-Segundo, H. Yan, and M. S. Zhan. Atom trap with surface plasmon and evanescent field. Phys. Rev. A, 75:030902, Mar 2007. [3] A.Cuche,O.Mahboub,E.Devaux,C.Genet,andT.W.Ebbesen.Plasmoniccoherent drive of an optical trap. Phys. Rev. Lett., 108:026801, Jan 2012. [4] ChristianStehle,HelmarBender,ClausZimmermann,DieterKern,MonikaFleischer, and Sebastian Slama. Plasmonically tailored micropotentials for ultracold atoms. Nat Photon, 5(8):494--498, 08 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65118 | - |
| dc.description.abstract | 由於奈米金屬結構的表面電漿性質,可使光聚縮到奈米等級、操控 表面電場分佈等諸多光學特性,電漿子學在奈米光子學的領域中有非 常好的應用前景,這篇論文我們將探討金屬介電質奈米複合光柵結構 的表面電漿性質,並提出利用奈米壓印顯影術製作此大面積特殊結構 的方法。在實驗與模擬變入射角反射光譜的分析中,發現此結構有位 於可見光波段的法布裡 -珀羅共振性質,且與理論有相當好的一致性, 也對表面電漿極化子與法布裡 -珀羅共振的電漿子偶合現象做出定性的 解釋。此元件的共振腔結構具有強電場增強、高品質因子及高敏感度 的特性,在電漿子積體電路、生物感測元件或原子陷阱等應用方面有 很好的潛力。 | zh_TW |
| dc.description.abstract | Plasmonics metallic nanostructures can confine and manipulate light down to nanoscale, and give promising scenarios for nanophotonic applications. In this thesis, we have designed and fabricated a new hybrid nanostructure, dielectric-embedded metallic grating, via large patterning nanoimprimt lithog- raphy technique. The plasmonics properties of Fabry-Perot resonance in such device are investigated both experimentally and theoretically. The anticross- ing behavior due to the strong coupling between the surface plasmon polari- tons and Fabry-Perot resonace is observed and explained qualitatively quite well. Our newly designed geometry possesses high electric field enhance- ment, high quality factors and great sensitivity, which will open up a new potential in applications such as integrated plasmonic circuits, bio sensing, atom-trap, etc. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:25:54Z (GMT). No. of bitstreams: 1 ntu-101-R99245017-1.pdf: 31129927 bytes, checksum: 3c2ef1285a37b7d332795fa03e1db1d2 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv Abstract v Contents vi List of Figures viii 1 Introduction 1 2 Theory of surface plasmon polaritons in metallic nano-structures 9 2.1 Definitionofplasmon...................9 2.2 Surface plasmon polaritons at interface between dielectric and metal . . . 11 2.3 Fieldconfinement.............................. 15 2.4 Surface plasmon polaritons in planar multilayer waveguides . . . . . . . 17 2.5 Metal-insulator-metal and insulator-metal-insulator geometries . . . . . . 21 3 Experiment 26 3.1 Angle-resolvedspectroscopy.................. 26 3.2 Atomicforcemicroscopy.......................... 29 3.3 Scanningelectronmicroscopy ....................... 33 4 Plasmonic properties of dielectric-embedded metallic grating 36 5 Conclusions and future work 53 | |
| dc.language.iso | en | |
| dc.subject | 法布裡-珀羅共振 | zh_TW |
| dc.subject | 瑞利反常 | zh_TW |
| dc.subject | 電漿子偶合 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 奈米壓印顯影術 | zh_TW |
| dc.subject | 間隙電漿極化子 | zh_TW |
| dc.subject | 表面電漿極化子 | zh_TW |
| dc.subject | Surface plasmon polaritons | en |
| dc.subject | Gap plasmon polaritons | en |
| dc.subject | Nanoimprimt lithography | en |
| dc.subject | Finite element method | en |
| dc.subject | Plasmon coupling | en |
| dc.subject | Rayleigh anomaly | en |
| dc.subject | Fabry-Perot resonace | en |
| dc.title | 金屬介電質奈米複合光柵結構之表面電漿性質 | zh_TW |
| dc.title | Plasmonic properties of metal/dielectric grating hybrid nano-structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 梁啟德(Chi-Te Liang),林泰源(Tai-Yuan Lin) | |
| dc.subject.keyword | 表面電漿極化子,法布裡-珀羅共振,間隙電漿極化子,奈米壓印顯影術,有限元素法,電漿子偶合,瑞利反常, | zh_TW |
| dc.subject.keyword | Surface plasmon polaritons,Fabry-Perot resonace,Gap plasmon polaritons,Nanoimprimt lithography,Finite element method,Plasmon coupling,Rayleigh anomaly, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-31 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 30.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
