Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65103
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶璨(Ching-Tsan Huang)
dc.contributor.authorHao-Ye Linen
dc.contributor.author林浩業zh_TW
dc.date.accessioned2021-06-16T23:25:16Z-
dc.date.available2017-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citation1. Hiatt A, Cafferkey R, Bowdish K. Production of antibodies in transgenic plants. Nature. 1989 342:76-8.
2. Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, et al. Generation and assembly of secretory antibodies in plants. Science. 1995 268:716-9.
3. Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, et al. Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med. 1998 4:601-6.
4. Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 2001 6:219-26.
5. Fischer R, Hoffmann K, Schillberg S, Emans N. Antibody production by molecular farming in plants. J Biol Regul Homeost Agents. 2000 14:83-92.
6. Lai H, Engle M, Fuchs A, Keller T, Johnson S, Gorlatov S, et al. Monoclonal antibody produced in plants efficiently treats West Nile virus infection in mice. Proc Natl Acad Sci U S A. 2010 107:2419-24.
7. Arakawa T, Chong DK, Merritt JL, Langridge WH. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res. 1997 6:403-13.
8. Chen HF, Chang MH, Chiang BL, Jeng ST. Oral immunization of mice using transgenic tomato fruit expressing VP1 protein from enterovirus 71. Vaccine. 2006 24:2944-51.
9. Mason HS, Lam DM, Arntzen CJ. Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A. 1992 89:11745-9.
10. McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, et al. Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology (N Y). 1995 13:1484-7.
11. Obembe OO, Popoola JO, Leelavathi S, Reddy SV. Advances in plant molecular farming. Biotechnol Adv. 2011 29:210-22.
12. Horn ME, Woodard SL, Howard JA. Plant molecular farming: systems and products. Plant Cell Rep. 2004 22:711-20.
13. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. Molecular farming in plants: host systems and expression technology. Trends in biotechnology. 2003 21:570-8.
14. Sethuraman N, Stadheim TA. Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol. 2006 17:341-6.
15. Gomord V, Sourrouille C, Fitchette AC, Bardor M, Pagny S, Lerouge P, et al. Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J. 2004 2:83-100.
16. Jin C, Altmann F, Strasser R, Mach L, Schahs M, Kunert R, et al. A plant-derived human monoclonal antibody induces an anti-carbohydrate immune response in rabbits. Glycobiology. 2008 18:235-41.
17. Fox JL. Puzzling industry response to ProdiGene fiasco. Nature biotechnology. 2003 21:3-4.
18. M.R. Challen KEG, S. Sreenivasaprasad, C.C. Rogers, S.B. Cutler, D.C. Diaper, T.J. Elliott and G.D. Foster. Transformation technologies for mushrooms Mushroom sci. 2000 15:1-19.
19. Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS. Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine. 2006 24:2506-13.
20. Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv. 2009 27:449-67.
21. 徐堯輝. 植物病毒載體應用於疫苗生產系統之開發潛力. 農業生技產業季刊. 2008 13:13-45.
22. Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature. 1985 317:489-95.
23. Hilleman MR. Yeast recombinant hepatitis B vaccine. Infection. 1987 15:3-7.
24. Streatfield SJ. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol Cell Biol. 2005 83:257-62.
25. Chen SM, Kung CM, Yang WJ, Wang HL. Efficacy of the nationwide hepatitis B infant vaccination program in Taiwan. J Clin Virol. 2011 52:11-6.
26. Thanavala Y, Yang YF, Lyons P, Mason HS, Arntzen C. Immunogenicity of transgenic plant-derived hepatitis B surface antigen. Proc Natl Acad Sci U S A. 1995 92:3358-61.
27. Pluddemann A, Van Zyl WH. Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet. 2003 43:439-46.
28. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, et al. A plant-derived edible vaccine against hepatitis B virus. FASEB J. 1999 13:1796-9.
29. 郭俊毅. 食用菇異源基因表現系統之建立及其應用. 國立台灣大學微生物與生物化學研究所博士論文. 2008.
30. Ko JL, Hsu CI, Lin RH, Kao CL, Lin JY. A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence; 1995.
31. 湯曉君. 金針菇免疫調節蛋白FIP-fve調控干擾素-r之研究. 中山醫學院毒理學研究所. 2000.
32. Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp Biol Med (Maywood). 2001 226:758-65.
33. Park SE, Li MH, Kim JS, Sapkota K, Kim JE, Choi BS, et al. Purification and characterization of a fibrinolytic protease from a culture supernatant of Flammulina velutipes mycelia. Biosci Biotechnol Biochem. 2007 71:2214-22.
34. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem. 2000 7:715-29.
35. Leung MY, Fung KP, Choy YM. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology. 1997 35:255-63.
36. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002 60:258-74.
37. Borchers AT, Keen CL, Gershwin ME. Mushrooms, tumors, and immunity: an update. Exp Biol Med (Maywood). 2004 229:393-406.
38. Ikekawa T, Ikeda Y, Yoshioka Y, Nakanishi K, Yokoyama E, Yamazaki E. Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing.II. The structure of EA3 and further purification of EA5. J Pharmacobiodyn. 1982 5:576-81.
39. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999 19:65-96.
40. Kuo CY, Huang CT. A reliable transformation method and heterologous expression of beta-glucuronidase in Lentinula edodes. J Microbiol Methods. 2008 72:111-5.
41. Kuo CY, Chou SY, Hseu RS, Huang CT. Heterologous expression of EGFP in enoki mushroom Flammulina velutipes. Bot Stud. 2010 51:303-9.
42. Gelvin SB. Finding a way to the nucleus. Curr Opin Microbiol. 2010 13:53-8.
43. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature biotechnology. 1998 16:839-42.
44. Chen X, Stone M, Schlagnhaufer C, Romaine CP. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol. 2000 66:4510-3.
45. Hanif M, Pardo AG, Gorfer M, Raudaskoski M. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet. 2002 41:183-8.
46. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet. 2005 48:1-17.
47. Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresour Technol. 2008 99:8524-7.
48. 徐韻涵. 以農桿菌媒介轉形法進行金針菇表達系統之研究. 國立台灣大學微生物與生物化學研究所碩士論文. 2008.
49. Darbani B, Eimanifar A, Stewart CN, Jr., Camargo WN. Methods to produce marker-free transgenic plants. Biotechnol J. 2007 2:83-90.
50. Huang LC, Wood EA, Cox MM. A bacterial model system for chromosomal targeting. Nucleic Acids Res. 1991 19:443-8.
51. Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol. 1981 150:467-86.
52. Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nature biotechnology. 2000 18:442-5.
53. Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci U S A. 1997 94:2117-21.
54. Aswath CR, Mo SY, Kim DH, Park SW. Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep. 2006 25:92-9.
55. Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH. Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J. 2005 3:591-9.
56. Casas-Flores S, Rosales-Saavedra T, Herrera-Estrella A. Three decades of fungal transformation: novel technologies. Methods Mol Biol. 2004 267:315-25.
57. Irie T, Sato T, Saito K, Honda Y, Watanabe T, Kuwahara M, et al. Construction of a homologous selectable marker gene for Lentinula edodes transformation. Biosci Biotechnol Biochem. 2003 67:2006-9.
58. Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M. Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet. 2000 37:209-12.
59. Broomfield PL, Hargreaves JA. A single amino-acid change in the iron-sulphur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet. 1992 22:117-21.
60. Matsson M, Hederstedt L. The carboxin-binding site on Paracoccus denitrificans succinate:quinone reductase identified by mutations. J Bioenerg Biomembr. 2001 33:99-105.
61. Dalziel K, McFerran NV, Wonacott AJ. Glyceraldehyde-3-phosphate dehydrogenase. Philos Trans R Soc Lond B Biol Sci. 1981 293:105-18.
62. Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RD, Pouwels PH, van den Hondel CA. Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene. 1990 93:101-9.
63. Doring F, Klapper M, Theis S, Daniel H. Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast Pichia pastoris. Biochem Biophys Res Commun. 1998 250:531-5.
64. Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, et al. Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol. 2001 56:707-9.
65. 呂映慈. 利用最佳化啟動子提升農桿菌媒介之金針菇表現系統蛋白質產量.國立台灣大學微生物與生物化學研究所碩士論文 2010.
66. Burns C, Gregory KE, Kirby M, Cheung MK, Riquelme M, Elliott TJ, et al. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet Biol. 2005 42:191-9.
67. Lugones LG, Scholtmeijer K, Klootwijk R, Wessels JG. Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol Microbiol. 1999 32:681-9.
68. Scholtmeijer K, Wosten HA, Springer J, Wessels JG. Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune. Appl Environ Microbiol. 2001 67:481-3.
69. Derkx PM, Madrid SM. The foldase CYPB is a component of the secretory pathway of Aspergillus niger and contains the endoplasmic reticulum retention signal HEEL. Mol Genet Genomics. 2001 266:537-45.
70. Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet. 1998 34:393-8.
71. Ito Y, Muraguchi H, Seshime Y, Oita S, Yanagi SO. Flutolanil and carboxin resistance in Coprinus cinereus conferred by a mutation in the cytochrome b560 subunit of succinate dehydrogenase complex (Complex II). Mol Genet Genomics. 2004 272:328-35.
72. Loon ECHaAPGMv. How proteins find mitochondria and intramitochondrial compartments. Trends Biochem Sci. 1986 11:4.
73. Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the 'gene-jockeying' tool. Microbiology and molecular biology reviews : MMBR. 2003 67:16-37, table of contents.
74. Gelvin SB, Kim SI. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochimica et biophysica acta. 2007 1769:410-21.
75. Huovila AP, Eder AM, Fuller SD. Hepatitis B surface antigen assembles in a post-ER, pre-Golgi compartment. The Journal of cell biology. 1992 118:1305-20.
76. Kauffman KJ, Pridgen EM, Doyle FJ, 3rd, Dhurjati PS, Robinson AS. Decreased protein expression and intermittent recoveries in BiP levels result from cellular stress during heterologous protein expression in Saccharomyces cerevisiae. Biotechnology progress. 2002 18:942-50.
77. Kumar GB, Ganapathi TR, Bapat VA. Production of hepatitis B surface antigen in recombinant plant systems: an update. Biotechnology progress. 2007 23:532-9.
78. Smith ML, Keegan ME, Mason HS, Shuler ML. Factors important in the extraction, stability and in vitro assembly of the hepatitis B surface antigen derived from recombinant plant systems. Biotechnology progress. 2002 18:538-50.
79. Dogan B, Mason HS, Richter L, Hunter JB, Shuler ML. Process options in hepatitis B surface antigen extraction from transgenic potato. Biotechnology progress. 2000 16:435-41.
80. Dove A. Uncorking the biomanufacturing bottleneck. Nature biotechnology. 2002 20:777-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65103-
dc.description.abstract菇類分子農場(mushroom molecular pharming)係以菇類為生物反應器,應用於醫藥用蛋白質或其他特定蛋白質的生產,具備安全性高、製程簡單和成本低廉的優勢,特別是在口服疫苗的開發。先前已於金針菇建立穩定的農桿菌媒介轉形系統表現異源蛋白質。然而,其實際應用與發展仍然受限於細菌性抗生素篩選標記與低表現量兩大問題。因此,本研究以金針菇單一點突變琥珀酸脫氫酶(succinate dehydrogenase, Sdh)作為同源性篩選標記(homologous selectable marker),建立非細菌性抗生素篩選系統,提升轉基因菇類的生物安全性。此外,發現刪除金針菇甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase, GPD)啟動子部分序列可明顯提升下游基因表現量。將其應用於功能性蛋白質B型肝炎表面抗原(hepatitis B surface antigen, HBsAg)之表現,產量可達329.08 ± 35.37 ng/g total soluble protein。希望藉由部分刪除之啟動子提升產量與同源性篩選,應用於金針菇B型肝炎口服疫苗之開發展,拓展菇類分子農場未來的應用。zh_TW
dc.description.abstractThe mushroom molecular pharming refers to the use of mushrooms as bioreactor to produce valuable and pharmaceutical proteins, especially oral vaccines. Previously, a reliable Agrobacterium-mediated transformation for Flammulina velutipes has been established. However, the application was limited due to bacterial antibiotic selectable marker and low yield in heterologous proteins. Until now, the selectable markers using antibiotic resistance genes raise public concerns of biosafety. In this study, we developed a homologous selectable strategy via a single point mutation of succinate dehygrogenase to get transformants against harmless agent, carboxin. Besides, the heterologous gene expression was greatly enhanced by partial deletion of the glyceraldehyde-3-phosphodehydrogenase (gpd) promoters. We also successfully expressed the hepatitis B virus surface antigen (HBsAg) by partial deletion of gpd promoter with a maximum expression of 329.08 ± 35.37 ng/g total soluble protein. We demonstrated that the homologous selectable marker and the enhancement of protein expression using partial deletion of gpd promoter provide useful strategies in development of oral vaccines in F. velutipes.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:25:16Z (GMT). No. of bitstreams: 1
ntu-101-R99b22024-1.pdf: 18729180 bytes, checksum: 2c642b931d91611bb00a7aacb3d3b17f (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝誌 I
摘要 II
AbstractIII
目錄 IV
圖目錄 IX
附圖目錄 XI
表目錄 XII
第一章 前言 1
一、 分子農場 1
1. 植物分子農場應用現況 1
2. 植物分子農場之優勢 2
3. 植物分子農場潛在的風險 2
二、 菇類分子農場 3
1. 菇類分子農場之優勢 3
三、 B型肝炎菇類口服疫苗 4
1. 黏膜免疫系統 4
2. 轉殖作物口服疫苗發展現況 4
3. B型肝炎口服疫苗發展性 5
四、 金針菇概述 7
1. 分類與形態 7
2. 栽培與市場價值 7
3. 營養價值與藥理活性 8
五、 菇類轉形系統 9
1. 轉形系統 9
2. 菇類電穿孔轉形法 9
3. 菇類農桿菌媒介轉形法 10
六、 篩選標記 11
1. 細菌性抗生素篩選系統 11
2. 無篩選標記系統 12
七、 金針菇單一點突變同源性琥珀酸脫氫酶基因篩選系統 14
1. 單一點突變同源性琥珀酸脫氫酶基因篩選系統 14
2. 單一點突變同源性琥珀酸脫氫酶基因篩選系統之優勢 15
八、 分生策略提升異源蛋白質表現量 16
1. 持續性表現之啟動子 16
2. 內含子 16
3. 訊息胜肽 17
4. 密碼子最適化 17
九、 研究動機與目標 18
第二章 材料與方法 20
一、 菌株與培養條件 20
1. 金針菇雙核菌絲 20
2. 大腸桿菌Escherichia coli DH5α 20
3. 農桿菌Agrobacterium tumefaciens LBA4404 20
二、 核酸引子序列 21
三、 金針菇琥珀酸脫氫酶啟動子選殖 23
1. Genome Walking 23
2. 金針菇染色體DNA萃取 23
3. 限制酶截切金針菇染色體DNA 23
4. Adaptors製備 23
5. Ligation 24
6. 聚合酶連鎖反應 24
四、 農桿菌媒介轉形質體建構 27
1. 潮黴素抗性農桿菌媒介轉形載體 27
2. 萎鏽靈抗性農桿菌媒介轉形載體 28
3. 農桿菌媒介轉形載體建構方法 32
五、 農桿菌電穿孔轉形 34
1. 農桿菌勝任細胞製備 34
2. 農桿菌電穿孔轉形 34
3. 農桿菌轉形株篩選 34
六、 金針菇農桿菌媒介轉形 35
1. 農桿菌培養與前處理 35
2. 農桿菌與真菌共培養 35
3. 選擇性培養基篩選 35
七、 金針菇轉形株篩選與分析 37
1. 選擇性培養基篩選與繼代 37
2. 轉形株螢光顯微鏡觀察 37
3. 轉形株核酸分析 37
4. 轉形株目標蛋白質分析 40
5. 西方墨點法分析 42
6. 南方氏雜合法分析 42
第三章 實驗結果 45
一、 金針菇單一點突變同源性琥珀酸脫氫酶基因篩選系統建立 45
1. 金針菇琥珀酸脫氫酶啟動子選殖 45
2. 完整金針菇琥珀酸脫氫酶選殖與定點突變 46
3. 農桿菌電穿孔轉形 46
4. 金針菇農桿菌媒介轉形 46
5. 轉形株DNA genomic PCR分析 47
二、 部分刪除金針菇甘油醛-3-磷酸脫氫酶啟動子對下游基因表現量之影響 55
1. 農桿菌電穿孔轉形 55
2. 金針菇農桿菌媒介轉形 55
3. 轉形株綠色螢光蛋白質基因分析 56
4. 轉形株綠色螢光蛋白質分析 56
三、 功能性基因B型肝炎表面抗原於金針菇表現量 67
1. 農桿菌電穿孔轉形 67
2. 金針菇農桿菌媒介轉形 67
3. 轉形株B型肝炎表面抗原基因DNA genomic PCR分析 68
4. 轉形株B型肝炎表面抗原蛋白質分析 68
第四章 討論 75
一、 金針菇單一點突變同源性琥珀酸脫氫酶基因篩選系統建立 75
1. 不同啟動子對於單一點突變同源性琥珀酸脫氫酶基因表現 75
2. 萎鏽靈抗性確認 76
二、 部分刪除金針菇甘油醛-3-磷酸脫氫酶啟動子對下游基因表現量之影響 77
1. 轉形株之差異 77
2. 目標基因插入數量與位置 77
3. 啟動子核酸序列分析 78
三、 功能性基因B型肝炎表面抗原於金針菇表現量 80
1. B型肝炎表面抗原mRNA轉錄情形 80
2. B型肝炎表面抗原轉譯後修飾作用 80
3. 蛋白質抽取方式與抗體辨識 81
第五章 結論 83
第六章 未來展望 84
第七章 參考文獻 85
第八章 附錄 90
dc.language.isozh-TW
dc.title建立金針菇同源性篩選系統及B型肝炎口服疫苗之開發zh_TW
dc.titleEstablishment of homologous selectable system and development of hepatitis B virus oral vaccine in Flammulina velutipesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許瑞祥(Ruey-Shyang Hseu),楊啟伸(Chii-Shen Yang),楊健志(Chien-Chih Yang),黃介辰(Chieh-Chen Huang)
dc.subject.keyword菇類分子農場,金針菇,甘油醛-3-磷酸脫氫&#37238,同源性篩選標記,單一點突變琥珀酸脫氫&#37238,B型肝炎口服疫苗,zh_TW
dc.subject.keywordMushroom molecular pharming,Flammulina velutipes,glyceraldehyde-3-phosphate dehydrogenase,homologous selectable marker,a single point mutation of succinate dehygrogenase,hepatitis B virus surface antigen oral vaccines,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
18.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved