請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65096
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙福杉 | |
dc.contributor.author | Chia-Ming Chang | en |
dc.contributor.author | 張珈銘 | zh_TW |
dc.date.accessioned | 2021-06-16T23:24:54Z | - |
dc.date.available | 2012-08-03 | |
dc.date.copyright | 2012-08-03 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-31 | |
dc.identifier.citation | [1] R.R. Peeters, I. Tindemans, E. De Schutter, A. Van der Linden, Comparing BOLD fMRI signal changes in the awake and anesthetized rat during electrical forepaw stimulation. Magnetic Resonance in Medicine, 2001, 19: 821-826.
[2] Chris Martin, John Martindale, Jason Berwick, and John Mayhew, Investigating neural–hemodynamic coupling and the hemodynamic response function in the awake rat. NeuroImage, 2006, 32: 33-48. [3] Nicholls ,J.G., Martin, A.R., Wallace, B.G. & Fuchs, P.A., From Neuron to Brain, 2001 (4th Ed./ Ch 18) Sunderland, MA: Sinauer Associates, Inc. [4] Bear, M.F., Connors, B.W. & Paradiso, M.A., Neuroscience-Exploring the brain, 2007 (3rd Ed./ Ch12) Baltimore, MD: Lippincott Williams & Wilkins. [5] Purves, D., Augustine, G.J., Fitzpatric, D., Hall, W.C., LaMantia, A.S., .0 3McNamara, J.O. & White, L.E. Neuroscience, 2008 (4th Ed/ Ch 9 & 10). Sunderland, MA: Sinauer Associates, Inc. [6] Mountcastle, V.B., Berman, A.L. & Davies, P.W., Topographic organization and modality representation in first somatic area of cat’s cerebral cortex to peripheral stimuli. Am J Physiol, 1955, 183: 646. [7] LeVay, S. & Nelson, S.B, Columnar organization of the visual cortex. In: The neural basis of visual function (Leventhal AG, ed),1991, 266-315. Boston: CRC press. [8] Zhang, Z.W. & Deschenes, M. Intracortical axonal projections of lamina VI cells of the primary somatosensory cortex in the rat: a single-cell labeling tudy. J Neurosci, 1997, 17: 6365-6379. [9] Salin, P.A. & Prince, D.A., Spontaneous GABAA receptor-mediated inhibitory currents in adult rat somatosensory cortex. J Neurophysiol, 1996, 75: 1573-1588. [10] Killackey, H.P. & Ebner, F.F, Two different types of thalamocortical projections to a single cortical area in mammals. Brain Behav Evol, 1972, 6: 141-169. [11] McKenna, T.M., Light, A.R. & Whitsel, B.L., Neurons with unusual response and receptive-field properties in upper laminae of cat SI cortex. J Neurophysiol, 51: 1055-1076. [12] Chapin, J.K., Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex. Brain Res, 1986, 62: 549-559. [13] Lamour, Y., Willer, J.C. & Guilbaut, G., Rat somatosensory (Sm1) cortex: Ⅰ. Characteristics of neuronal responses to noxious stimulation and comparison with non-noxious stimulation. Exp Brain Res, 1983a, 49: 35-45. [14] Lamour, Y., Guilbaut, G. & Willer, J.C., Rat somatosensory (Sm1) cortex: Ⅱ. Laminar and columnar organization of noxious and non-noxious inputs. Exp Brain Res, 1983b, 49: 46-54. [15] de Kock and B. Sakmann, High frequency action potential bursts (≥100Hz) in L2/3 and L5b thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J Physiol, 2008, 586: 3353-3364. [16] John K. Chapin, Barry D. Waterhouse, and Donald J. Woodward, Differences in cutaneous sensory response properties of single somatosensory cortical neurons in awake and halothane anesthetized rats. Brain research bulletin, 1980, 6: 63-70. [17] Li Min Chen, Robert Mark Friedman, and Anna Wang Roe, Optical imaging of SI topography in anesthetized and awake squirrel monkeys. The journal of neuroscience, 2005, 25(33): 7648-7659. [18] Armstrong-James M, Fox K, Das-Gupta A., Flow of excitation within rat barrel cortex on striking a single vibrissae. J Neurophysiol, 1992, 68: 5345-1358. [19] Woolsey, T.A. & Van der Loos, H., The structural organization of layer Ⅳ in the somatosensory region (S1) of mouse vertebral cortex. The descrption of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 1970, 17: 205-242. [20] Alvaro Pascual-Leone, Josep Valls-sole, Eric M. Wasswermann and Mark Hallett, Response to rapid-rate transcranial magnetic stimulation of the human moter cortex. Brain, 1994, 117: 847-858. [21] Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol, 1968, 196: 497-493. [22] Dobelle WH, Mladejovsky MG. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol, 1974, 243: 553-576. [23] Normann RA. A penetrating cortical electrode array: design considerations. IEEE international coference on systems, Man and Cybernetics, LA, 1990. [24] Schmidt EM, Bak MJ, Hambrecht FT, Kafta CV, O’Rourke DK, Vallabhanath P., Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 1996, 119: 407-422. [25] FS Jaw, YC Kao, CP Chen, Y-Y Chen, High-fidelity evoked potential for mapping the rat tail in thalamus. Neuroscience, 2008, 155: 277-282 [26] FS Jaw, YC Kao, CP Chen, WL Liao, Cerebral columnar organization of the first nociceptive component induced by CO2 laser on the tail of the rat. Neuroscience, 2009, 158: 945-950 [27] YC Kao, FS Jaw, Optimal parameters of CO2 laser-induced nociception for electrophysiological recordings. J comp. physiol. A., 2011, 198: 79-83 [28] Kruger J, Bach M, Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res, 1981, 41: 191-194. [29] M.L. Tsai, C.Y. Chai, and C.T. Yen. A simple method for the construction of a recording-injection microelectrode with glass-insulated microwire. Journal of Neuroscience Methods, 1997, 721-4. [30] G.W.M. Westby and H. Wang. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat. Journal of Neuroscience Methods, 1997, 76: 123-133. [31] M.L. Tsai and C.T. Yen, A simple method for fabrication horizontal and vertical microwire arrays. Journal of Neuroscience Methods, 2003, 131: 107-110. [32] Wise KD, Angell JB, A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng, 1975, 22: 212-219. [33] Hoogerwerf AC, Wise KD, A three dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng, 1994, 41: 113-1146. [34] Chien, C.N., Li, J.Y. & Jaw, F.S., Pseudo-synchronous system for recording action and field potentials simultaneously. Measurement, 2007, 40: 717-723. [35] Tsai, M.F., Quantitative mechanical and thermal stimulators. unpublished Master’s thesis, NTU, Taiwan, 2000. [36] Gaute T. Einevoll, Klas H. Pettersen, Anna Devor, Istvan Ulbert, Eric Halgren and Anders M. Dale. Laminar population analysis: Estimating firing rates and evoked synaptic activity from rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. J Neurophysiol, 2007, 97:3174-2190. [37] Devor, A., Dunn, A.K., Andermann, M.L., Ulbert, I., Boas, D.A. & Dale, A.M. Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex. Neuron, 2003, 39: 353-359. [38] Haslinger, R., Ulbert, I., Moore, C.I., Brown, E.N. & Devor, A., Analysis of LFP Phase Predicts Sensory Response of Barrel Cortex. J Neurophysiol, 2006, 96:1658-1663. [39] Takakuni Goto, Rieko hatanaka, Takeshi Ogawa, Akira Sumiyoshi, Jorge Riera and Ryuta Kawashima, An evaluation of the conductivity profile in the somatosensory barrel cortex of wistar rats. J Neurophysiol, 2010, 104: 3388-3412. [40] Patrick J. Rousche, Richard A. Normann, Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. Journal of Neuroscience Methods, 1998, 82: 1-15. [41] S. T. Retterer, K. L. Smith, C. S. Bjornsson, K. B. Neeves, A. J. Spence, J. N. Turner, W. Shain, and M. S. Isaacson, Model neural prostheses with integrated microfluidics: A potential intervention strategy for controlling reactive cell and tissue responses. IEEE Trans,. Biomed. Eng., 2004, 51: 2063-2073. [42] W. Shain, L. Spataro, J.Dilgen, K. Haverstick, S. Retterer, M. Isaacson, M. Saltzman, and J. N. Turner, Controlling cellular reactive responses around neural prosthetic devices using peripheral and local intervention strategies. IEEEE Trans. Neural Syst. Rehabil. Eng., 2003, 11: 186-188. [43] Di S, Baumgartner C, Barth DS., Laminar analysis of extracellular field potentials in rat vibrissa/barrel cortex. J Neurophysiol, 1990, 63: 832-840. [44] Somogyvari Z, Zalanyi L, Uibert I, Erdi P., Model-based source localization of extracellular action potentials. J Neurosci Methods, 2005, 147: 126-137. [45] Killackey, H.P., Koralek, K.A., Chiaia, N.L. & Rhodes, R.W., Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex. J Comp Neurol. 1989, 282: 428-445. [46] Gilbert, C.D., Horizontal integration and cortical dynamics. Neuron, 1992, 9: 1-13. [47] Chmielowska, J., Carvell, G.E. & Simons, D.J., Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex. J Comp Neurol, 1989, 285: 325–338. [48] Mountcastle, V.B., The columnar organization of the neocortex. Brain, 1997, 120: 701-722. [49] NeuroNexus. (2012). A-Style Probes. Retrieved Jan. 09, 2012. From http://www.neuronexus.com/Products/ResearchProducts/MicroelectrodeArray/ProbeDesigns/AStyleProbes/tabid/210/Default.aspx [50] A. B. Schwartz, Cortical neural prosthetics. Annu. Rev. Neurosci., 2004, 27: 487-507. [51] J. N. Turner, W. Shain, D. H. Szarowski, M. Andersen, S. Martins, M. Isacson, and H. Craighead, Cerbral astrocyte response to micromachined ilicon implants. Exp. Neurol., 1999, 156: 33-49. [52] D. H. Szarowski, M. D. Andersen, S. Retterer, A. J. Spence, M. Isaacson, H. G. Craighead, J. N. Turner, and W. Shain, Brain responses to micromachined silicon devices. Brain Res., 2003, 983: 22-35. [53] M. A. Nicolelis, D. Dimitrov, J. M. Carmena, R. Crist, G. Lehew, J. D. Kralik, and S. P. Wise, Chonick, multisite, multielectrode recording in macaque monkeys. Proc. Nat. Acad. Sci., 2003, 100: 11041-11046 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65096 | - |
dc.description.abstract | 擷取清醒狀態大腦電生理訊號並且進行分析是目前研究趨勢,但過往電生理研究在技術上以及實驗上的考量,幾乎是使用麻醉狀態之動物進行研究。目前已有文獻指出麻醉和清醒狀態下神經元運作有差異,甚至不同的麻藥有不同的影響。因此,我們若要瞭解大腦功能性的反應,勢必在清醒狀態下進行實驗。本論文即是實驗室轉型之基礎研究,藉此設計出適合未來清醒狀態研究的實驗架構,並且探討可植入式多通道神經探針是否適用於本實驗室未來的實驗目標。
本論文選用大鼠大腦初級體感覺皮質區(primary somatosensory cortex, S1)作為記錄之核區。藉由該皮質區的特性,以及所選用之多通道神經探針的架構,我們透過分析大鼠後肢區同一柱狀結構(column)內各分層(laminar)神經群對於機械性刺激的反應,來評估植入式多通道神經探針於長期記錄下之可行性。 於神經探針植入後三個月之觀察,將所記錄的誘發性神經動作電位(evoked action potential)由三個面向進行分析。從波形來看,長期記錄下所收集之訊號振幅皆有變小,但不同皮質深度所收集之訊號變小程度不盡相同,且其中棘波(spike)發生重疊可能性升高。延遲時間來看,長期記錄下依然是第IV層最短,符合文獻中短期記錄之結果。由積分結果來看,各層數值皆有下降之趨勢,其中又以第V層下降幅度最大。另外,由積分結果進行統計分析後發現,長期記錄下依然可區分第II/III層以及第IV層之活性。由此可知,雖然本論文所選用之神經探針在植入後會影響神經元活性,但依然足以進行相關分析。況且該電極擁有十六通道之優勢,對於研究清醒狀態下初級體感覺皮質區各層活性差異有莫大的助益。 | zh_TW |
dc.description.abstract | Presently, electrophysiological studies focus primarily on recording and analyzing signals while testing animals are in conscious state. New research suggests the idea that differences in state of brain as well as type of anesthetics could result in different activity of neurons. In addition, some research studies point out the limitations of doing animal testing under states of anesthesia since higher brain function will be inhibited at the time. Thus research animals should be maintained consciousness. The purpose of this study is to design a protocol of electrophysiological study with animals in conscious states and evaluate the feasibility of applying implantable multi-channel neuroprobe in future studies.
In this study, signals were recorded from hindpaw region of the primary somatosensory cortex (S1) in adult rats. Due to the response properties of neurons in primary somatosensory cortex and the conformation of multi-channel neuroprobe, the responses to mechanical stimuli of neurons were recorded in same column, however, in different laminar in order to evaluate the usability of the implantable multi-channel neuroprobe. After implantation, the changes of evoked action potential were examined for three months. The results recorded were analyzed in three different ways: (1) amplitude of signals; (2) latency of evoked action potential; and (3) statistical analysis on layers. First of all, although the decline was different in laminar, the amplitude of the signal was found becoming smaller over time. Additionally, the probability of signal overlap increased. Secondly, regarding to the latency of evoked action potential, in long-term recording, the shortest one was found in layer IV which corresponded to the previous studies. Last but not least, there was a declining trend of signal integration in laminar, and the greatest decline was in layer V. Moreover, in long-term recording, the differences between the activity of layer II/III and layer IV could be distinguished utilizing statistical analysis. Therefore, although neuroprobe would influence the activity of neurons after implantation, it could be utilized to record signals for analysis. Furthermore, since there are multi-channels in one neuroprobe, this will be the superiority on studying differences in activity in S1 laminar with animals in conscious states. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:24:54Z (GMT). No. of bitstreams: 1 ntu-101-R99548006-1.pdf: 1983970 bytes, checksum: de8edec619cfb2f0013b5583dd1ba81b (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 目錄 iv 圖目錄 vi 一、緒論 1 二、研究方法與架構 5 2.1動物手術 5 2.2 記錄系統 6 2.3神經探針 7 2.4 headstage支架 8 2.5清醒狀態電生理記錄 9 2.6信號分析 9 2.6.1 多重動作電位之整流與積分 9 2.6.2 統計分析 10 2.7組織切片 10 三、實驗結果 18 3.1神經探針植入前後電生理記錄 18 3.2 神經探針植入後長期電生理記錄 19 3.2.1 皮質各層神經元活性 19 3.2.2 皮質各層多重動作電位 19 3.2.3 皮質第II/III層以及第IV層活性之比較 20 四、討論 31 4.1神經探針植入後電生理訊號品質之變異 31 4.1.1 波形變異 31 4.1.2 延遲時間 31 4.1.3 積分大小 32 4.2神經探針與微電極之比較 33 五、結論 35 六、參考文獻 36 | |
dc.language.iso | zh-TW | |
dc.title | 以大鼠初級體感覺皮質各層神經活性
評估植入式多通道神經探針 | zh_TW |
dc.title | Evaluation of implantable multi-channel neuroprobe
based on neuronal activities among layers of the primary somatosensory cortex of the rat | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝建興,陳右穎,蕭富仁,蔡孟利 | |
dc.subject.keyword | 清醒狀態,長期記錄,植入式多通道神經探針,初級體感覺皮質區,觸覺,後肢, | zh_TW |
dc.subject.keyword | conscious state,long-tern recording,implantable multi-channel neuroprobe,primary somatosensory cortex,touch,hindpaw, | en |
dc.relation.page | 41 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。