Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65087
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝(Hwai-Shen Liu)
dc.contributor.authorYu-Chieh Wangen
dc.contributor.author王鈺傑zh_TW
dc.date.accessioned2021-06-16T23:23:20Z-
dc.date.available2014-12-31
dc.date.copyright2012-08-07
dc.date.issued2012
dc.date.submitted2012-07-31
dc.identifier.citation參考文獻
Berman L.D. (1961) Evaporative cooling of circulating water 2nd ed. Chap. 2:94-99.
Bosnjakovic F. (1965) Technische Thermodynamik.
Burns J.R., Ramshaw C. (1996) Process intensification: Visual study of liquid maldistribution in rotating packed beds. Chemical Engineering Science 51:1347-1352.
Burns J.R., Jamil J.N., Ramshaw C. (2000) Process intensification: operating characteristics of rotating packed beds -- determination of liquid hold-up for a high-voidage structured packing. Chemical Engineering Science 55:2401-2415.
Chandra A., Goswami P., Rao D. (2005) Characteristics of flow in a rotating packed bed (HIGEE) with split packing. Industrial & Engineering Chemistry Research 44:4051-4060.
Chang C.C., Chiu C.Y., Chang C.Y., Chang C.F., Chen Y.H., Ji D.R., Yu Y.H., Chiang P.C. (2009) Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. Journal of Hazardous Materials 161:287-293.
Chang C.F., Lee S.C. (2012) Adsorption behavior of pesticide methomyl on activated carbon in a high gravity rotating packed bed reactor. Water Research 46:2869-2880.
Chen J., Shao L., Zhang C., Chu G. (2003) Preparation of TiO2 nanoparticles by a rotating packed bed reactor. Journal of materials science letters 22:437-439.
Chen J., Li Y., Wang Y., Yun J., Cao D. (2004a) Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Materials research bulletin 39:185-194.
Chen J.F., Gao H., Zou H.K., Chu G.W., Zhang L., Shao L., Xiang Y., Wu Y.X. (2010a) Cationic polymerization in rotating packed bed reactor: Experimental and modeling. AIChE Journal 56:1053-1062.
Chen J.F., Shao L. (2007) Recent advances in nanoparticles production by high gravity technology – From fundamentals to commercialization. Journal of Chemical Engineering of Japan 40:896-904
Chen J.F., Wang Y.H., Guo F., Wang X.M., Zheng C. (2000) Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Industrial & Engineering Chemistry Research 39:948-954.
Chen J.F., Zhou M.Y., Shao L., Wang Y.Y., Yun J., Chew N.Y.K., Chan H.K. (2004b) Feasibility of preparing nanodrugs by high-gravity reactive precipitation. International Journal of Pharmaceutics 269:267-274.
Chen Y.H., Huang Y.H., Lin R.H., Shang N.C. (2010b) A continuous-flow biodiesel production process using a rotating packed bed. Bioresource Technology 101:668-673.
Chen Y.H., Huang Y.H., Lin R.H., Shang N.C., Chang C.Y., Chang C.C., Chiang P.C., Hu C.Y. (2011) Biodiesel production in a rotating packed bed using K/γ-Al2O3 solid catalyst. Journal of the Taiwan Institute of Chemical Engineers 42:937-944.
Chen Y.S. (2011) Correlations of Mass Transfer Coefficients in a Rotating Packed Bed. Industrial and Engineering Chemistry Research 50:1778-1785.
Chen Y.-S., Lin F.-Y., Lin C.-C., Tai C.Y.-D., Liu H.-S. (2006a) Packing characteristics for mass transfer in a rotating packed bed. Industrial and Engineering Chemistry Research 45:6846-6853.
Chen Y.-S., Hsu Y.-C., Lin C.-C., Tai C.Y.-D., Liu H.-S. (2008) Volatile organic compounds absorption in a cross-flow rotating packed bed. Environmental Science and Technology 42:2631-2636
Chen Y.S., Liu H.S. (2002) Absorption of VOCs in a Rotating Packed Bed. Industrial & Engineering Chemistry Research 41:1583-1588.
Chen Y.S., Lin C.C., Liu H.S. (2005a) Mass transfer in a rotating packed bed with various radii of the bed. Industrial & Engineering Chemistry Research 44:7868-7875.
Chen Y.S., Lin C.C., Liu H.S. (2005b) Mass transfer in a rotating packed bed with viscous Newtonian and non-Newtonian fluids. Industrial & Engineering Chemistry Research 44:1043-1051.
Chen Y.S., Tai C.Y.D., Chang M.H., Liu H.S. (2006b) Characteristics of micromixing in a rotating packed bed. Journal of the Chinese Institute of Chemical Engineers 37:63-69.
Chiang C.Y. (2008) Stripping methanol from a high viscosity system by a rotating packed bed. Graduate Institute of Chemical Engineering College of Engineering National Taiwan University Master Thesis.
Chiang C.Y., Chen Y.S., Liang M.S., Lin F.Y., Tai C.Y.D., Liu H.S. (2009) Absorption of ethanol into water and glycerol/water solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers 40:418-423.
Das A., Bhowal A., Datta S. (2008) Continuous biosorption in rotating packed-bed contactor. Industrial & Engineering Chemistry Research 47:4230-4235.
Guo F., Zheng C., Guo K., Feng Y., Gardner N.C. (1997) Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chemical Engineering Science 52:3853-3859.
Guo K., Guo F., Feng Y., Chen J., Zheng C., Gardner N.C. (2000) Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor. Chemical Engineering Science 55:1699-1706.
Higbie R. (1935) The Rate of Absorption of Pure Gas into a Still Liquid during Short Periods of Exposure. Transactions of the American Institute of Chemical Engineers 31:365-389.
Jaber H., Webb R.L. (1989) Design of towers by the effectiveness-NTU method. Journal of Heat Transfer 111:837-8443.
Jiao W., Liu Y., Qi G. (2010) A new impinging stream-rotating packed bed reactor for improvement of micromixing iodide and iodate. Chemical Engineering Journal 157:168-173
Jiao W., Liu Y., Qi G. (2012) Micromixing Efficiency of Viscous Media in Novel Impinging Stream-Rotating Packed Bed Reactor. Industrial and Engineering Chemistry Research 51:7113-7118.
Kelleher T., James R. (1996) Distillation studies in a high-gravity contactor. Industrial & Engineering Chemistry Research 35:4646-4655.
Keyvani M., Gardner N.C. (1989) Operating characteristics of rotating beds. Chemical Engineering Progress 85:48-52.
Klimanek A., Biaecki R.A. (2009) Solution of heat and mass transfer in counterflow wet-cooling tower fills. International Communications in Heat and Mass Transfer 36:547-553
Ku Y., Ji Y.S., Chen H.W. (2008) Ozonation of o-cresol in aqueous solutions using a rotating packed-bed reactor. Water Environment Research 80:41-46.
Leng Y.S. (2010) Vacuum stripping methanol from biodiesel in a rotating packed bed. Graduate Institute of Chemical Engineering College of Engineering National Taiwan University Master Thesis.
Lewis W. K., Whitman W. E. (1924) Principles of Gas Absorption. Industrial & Engineering Chemistry Research 16:1215-1220.
Li Y., Ji J., Yu Y., Xu Z., Li X. (2010) Hydrodynamic Behavior in a Rotating Zigzag Bed. Chinese Journal of Chemical Engineering 18:34-38.
Lin C.C., Chiang Y.J. (2012) Preparation of coupled ZnO/SnO2 photocatalysts using a rotating packed bed. Chemical Engineering Journal 181-182:196-205.
Lin C.C., Liu H.S. (2000) Adsorption in a centrifugal field: Basic dye adsorption by activated carbon. Industrial & Engineering Chemistry Research 39:161-167.
Lin C.C., Jian G.S. (2007) Characteristics of a rotating packed bed equipped with blade packings. Separation and Purification Technology 54:51-60.
Lin C.C., Liu W.T. (2007) Mass transfer characteristics of a high-voltage rotating packed bed. Journal of Industrial and Engineering Chemistry 13:71-78.
Lin C.C., Su Y.R. (2008) Performance of rotating packed beds in removing ozone from gaseous streams. Separation and Purification Technology 61:311-316.
Lin C.C., Chen Y.S., Liu H.S. (2000) Prediction of liquid holdup in countercurrent-flow rotating packed bed. Chemical Engineering Research and Design 78:397-403.
Lin C.C., Ho T.J., Liu W.T. (2002) Distillation in a rotating packed bed. Journal of Chemical Engineering of Japan 35:1298-1304.
Lin C.C., Liu W.T. (2003) Ozone oxidation in a rotating packed bed. Journal of Chemical Technology and Biotechnology 78:138-141.
Lin C.C., Liu W.T., Tan C.S. (2003) Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & Engineering Chemistry Research 42:2381-2386.
Lin C.C., Chen Y.S., Liu H.S. (2004a) Adsorption of dodecane from water in a rotating packed bed. J. Chin. Inst. Chem. Eng 35:531.
Lin C.C., Lin Y.H., Tan C.S. (2010) Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. Journal of Hazardous Materials 175:344-351.
Lin C.C., Wei T.Y., Liu W.T., Shen K.P. (2004b) Removal of VOCs from gaseous streams in a high-voidage rotating packed bed. Journal of Chemical Engineering of Japan 37:1471-1477.
Lin C.C., Chen B.C., Chen Y.S., Hsu S.K. (2008) Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Separation and Purification Technology 62:507-512.
Lin C.C., Chao C.Y., Liu M.Y., Lee Y.L. (2009) Feasibility of ozone absorption by H2O2 solution in rotating packed beds. Journal of Hazardous Materials 167:1014-1020.
Liu H.S., Lin C.C., Wu S.C., Hsu H.W. (1996) Characteristics of a rotating packed bed. Industrial and Engineering Chemistry Research 35:3590-3596.
Merkel F. (1925) Verdunstungskühlung. VDI-Zeitchrift 70:123-127.
Mondal A., Pramanik A., Bhowal A., Datta S. (2012) Distillation studies in rotating packed bed with split packing. Chemical Engineering Research and Design 90:453-457.
Munjal S., Dudukovc M.P., Ramachandran P. (1989) Mass-transfer in rotating packed beds--I. Development of gas--liquid and liquid--solid mass-transfer correlations. Chemical Engineering Science 44:2245-2256.
Nascimento J.V.S., Ravagnani T.M.K., Pereira J.A.F.R. (2009) Experimental study of a rotating packed bed distillation column. Brazilian Journal of Chemical Engineering 26:219-226.
Ng C.M., Chen P.C., Manickam S. (2012) Green high-gravitational synthesis of silver nanoparticles using a rotating packed bed reactor (RPBR). Industrial & Engineering Chemistry Research 51:5375-5381.
Peel J., Howarth C.R., Ramshaw C. (1998) Process intensification: Higee seawater deaeration. Chemical Engineering Research & Design 76:585-593.
Poppe M., Rögener H. (1991) Berechnung von Rückkühlwerken. VDI-Wärmeatlas Mi 1-Mi 15.
Quarderer G.J., Trent D.L., Stewart E.J., Tirtowidjojo, Mehta J., Tirtowidjojo A. (2000) Method for synthesis of hypohalous acid, in: T. D. C. Company (Ed.).
Ramshaw C. (1983) HIGEE distillation - An example of process intensification. Chemical Engineer (London):13-14.
Ramshaw C., Mallinson R.H. (1981) Mass transfer process, US Patent 4,283,255.
Rao D.P., Kumar M.P. (1990) Studies on a high-gravity gas-liquid contactor. Industrial and Engineering Chemistry Research 29:917-920.
Rao D.P., Bhowal A., Goswami P.S. (2004) Process Intensification in Rotating Packed Beds (HIGEE): An Appraisal. Industrial and Engineering Chemistry Research 43:1150-1162.
Stankiewicz A.I., Moulijn J.A. (2000) Process intensification: Transforming chemical engineering. Chemical Engineering Progress 96:22-34.
Sawistowski H. (1957) Flooding velocities in packed columns operating at reduced pressures. Chemical Engineering Science 6:138-140.
Shao L., Yu Y., Bian S., Chen J., Li X. (2005) Synthesis of nanosized Y-type TiOPc by a high gravity method. Journal of materials science 40:4373-4374.
Singh S.P., Wilson J.H., Counce R.M., Villiers-Fisher J.F., Jennings H.L., Lucero A.J., Reed G.D., Richard A A., Mike G E. (1992) Removal of volatile organic compounds from groundwater using a rotary air stripper. Industrial and Engineering Chemistry Research 31:574-580.
Sun B.C., Wang X.M., Chen J.M., Chu G.W., Chen J.F., Shao L. (2011) Synthesis of nano-CaCO3 by simultaneous absorption of CO2 and NH3 into CaCl2 solution in rotating packed bed. Chemical Engineering Journal 168:731-736.
Sung W.F., Chen Y.S. (2012) Characteristics of a rotating packed bed equipped with blade packings and baffles. Separation and Purification Technology 93:52-58.
Tai C.Y., Wang Y.H., Liu H.S. (2008) A green process for preparing silver nanoparticles using spinning disk reactor. AIChE Journal 54:445-452.
Tai C.Y., Chia-Te Tai, Chang M.H., Liu H.S. (2007) Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Industrial & Engineering Chemistry Research 46:5536-5541.
Tan C.-S., Lee P.-L. (2008) Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed. Environmental Science and Technology 42:2150-2154.
Tan C.S., Chen J.E. (2006) Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology 49:174-180.
Tung H.H., Mah R.S.H. (1985) Modeling liquid mass transfer in higee separation process. Chemical Engineering Communications 39:147-153.
Wang D.G., Guo F., Chen J.F., Liu H., Zhang Z.T. (2006) Preparation of nano aluminium trihydroxide by high gravity reactive precipitation. Chemical Engineering Journal 121:109-114.
Wang G., Xu Z., Yu Y., Ji J. (2008) Performance of a rotating zigzag bed--A new HIGEE. Chemical Engineering and Processing: Process Intensification 47:2131-2139.
Xiao Q.G., Tao X., Chen J.F. (2007) Silica nanotubes based on needle-like calcium carbonate: fabrication and immobilization for glucose oxidase. Industrial & Engineering Chemistry Research 46:459-463.
Yang K., Chu G.W., Shao L., Luo Y., Chen J.-F. (2009) Micromixing efficiency of rotating packed bed with premixed liquid distributor. Chemical Engineering Journal 153:222-226.
Yang K., Chu G.W., Zou H.K., Sun B.C., Shao L., Chen J.F. (2011) Determination of the effective interfacial area in rotating packed bed. Chemical Engineering Journal 168:1377-1382.
Yang H.J., Chu G.W., Zhang J.W., Shen Z.G., Chen J.F. (2005) Micromixing efficiency in a rotating packed bed: Experiments and simulation. Industrial & Engineering Chemistry Research 44:7730-7737.
Yang S.T., Lo Y.M., Min D.B. (1996) Xanthan gum fermentation by Xanthomonas campestris immobilized in a novel centrifugal fibrous-bed bioreactor. Biotechnology Progress 12:630-637.
Zhang L.L., Wang J.X., Xiang Y., Zeng X.F., Chen J.F. (2011) Absorption of Carbon Dioxide with Ionic Liquid in a Rotating Packed Bed Contactor: Mass Transfer Study. Industrial and Engineering Chemistry Research 50:6957-6964.
Zhao H., Wang J.X., Zhang H.X., Shen Z.G., Yun J., Chen J.F. (2009) Facile preparation of danazol nanoparticles by High-Gravity Anti-solvent Precipitation (HGAP) method. Chinese Journal of Chemical Engineering 17:318-323.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65087-
dc.description.abstract旋轉填充床為程序強化的重要項目之一,其係利用離心力所造成之高重力場取代地球之重力場,達到提升質傳效果之目的。氣液之間的質傳現象即相變化會伴隨著大量的潛熱,這顯示氣體液體之間會同時發生質量與熱量的傳遞。為了分析逆流式旋轉填充床中,液體和氣體之間的熱量質量傳遞現象,本研究以熱水和冷空氣作為系統,分別以實驗量測與理論模擬的方式,探討進料空氣的相對濕度與體積流速、進料熱水的體積流速與溫度、進料空氣與水的體積流速比例對系統的影響,並且驗證模擬與實驗之間的關聯性。
本研究於實驗中使用鈕扣型溫度記錄器,以得到各個實驗條件下床體內部不同半徑處的溫度(T_iButton)。此外,並以(Klimanek and Biaecki, 2009)提出的冷卻水塔理論作為基礎,使用簡化後的數學模型來描述旋轉填充床中水的質量流速、水的溫度、空氣溫度與空氣濕度這四個變數與徑向位置的關係;根據上述之流體變數,即可求出理論估計的溫度記錄器溫度(T_(iButton,est))。本研究中,經由實驗量測到的T_iButton與經由理論計算出的T_(iButton,est),兩者之間的誤差不超過5%,由此可知本研究所提出之理論模型,能夠解釋氣體液體之間同時發生的熱量與質量傳遞現象,對於將旋轉填充床應用在蒸餾、化學反應等與溫度相關之程序上,提供了嶄新的思考方向與詳細的基礎研究資料。
zh_TW
dc.description.abstractA so-called rotating packed bed (RPB) which substitutes the centrifugal force for gravitational force plays an important role in field of process intensification. With the help of centrifugal force, a better mass transfer efficiency could be expected. Because gas-liquid mass transfer which is phase change involves a large amount of latent heat, heat transfer occurs simultaneously. In this study, the phenomena of heat and mass transfer were investigated in the water-air system. The air flow rate, water flow rate, air temperature, water temperature, humidity of air and the ratio of air to water flow rate were taken into consideration in simulation and experiments. Finally, the relationship between simulation and experiments was discussed.
The temperature profile (T_iButton) was obtained by iButton® temperature data loggers at different experimental conditions and positions. Based on the theory of cooling tower proposed by Klimanek and Biaecki, this study used the modified model to describe four dependent variables (temperature of water、 temperature of air、 humidity of air、 mass flow rate of water) and the independent variable (the radial position in the RPB). With the gas and liquid data from simulation, the T_iButton can be estimated (T_(iButton,est )). In this study, the error between T_iButton and T_(iButton,est ) was smaller than 5%, so the modified model in this study can explain the phenomena of heat and mass transfer between gas and liquid phases. Therefore, the study provided not only the brand-new thinking but also plenty of basic research data for the application of temperature-sensitive chemical engineering processes in the RPB.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:23:20Z (GMT). No. of bitstreams: 1
ntu-101-R99524032-1.pdf: 2815855 bytes, checksum: ddbc616d2d80d9229d37052b9ba6e682 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄
摘要 I
Abstract II
第一章 序論 1
第二章 文獻回顧 3
2-1旋轉填充床(Rotating packed bed, RPB) 3
2-1-1旋轉填充床之構造與床體設計 4
2-1-2旋轉填充床之壓降 9
2-1-3旋轉填充床之液體流態、液體滯留量、液體滯留時間 12
2-1-4旋轉填充床之有效質傳界面積與填充物結構 15
2-1-5旋轉填充床之液膜質傳係數與氣膜質傳係數 17
2-1-6旋轉填充床之微觀混合 21
2-1-7旋轉填充床之應用與發展 23
2-2冷卻水塔(Cooling tower)之數學模型 32
第三章 理論分析 34
3-1液體氣體之間熱量質量傳遞之數學模型建立 34
3-1-1傳統填充床中液體與氣體之間熱量質量傳遞之數學模型 34
3-1-2旋轉填充床中液體與氣體之間熱量質量傳遞之數學模型 39
3-2 總括氣膜體積質傳係數(overall volumetric mass transfer coefficient)分析 43
3-2-1雙膜理論 (Two-Film Theory) 43
3-2-2氣膜質傳係數之求法 46
3-2-3非恆溫環境下之總括氣膜體積質傳係數之推導 48
第四章 實驗方法 52
4-1 實驗裝置 52
4-2實驗藥品與儀器 53
4-3實驗流程 55
第五章 模擬結果與討論 60
5-1實際實驗操作條件下之模擬結果 64
5-2改變進料氣體之相對濕度對模擬結果之影響 69
5-2-1模擬進料氣體之空氣相對溼度為10 % 69
5-2-2模擬進料氣體之空氣相對溼度為30 % 72
5-2-3模擬進料氣體之空氣相對溼度為40 % 74
5-2-4模擬進料氣體之空氣相對溼度為60 % 76
5-2-5 比較不同相對濕度之進料氣體對模擬結果之影響 78
5-3改變進料氣體之空氣體積流速對模擬結果之影響 81
5-3-1模擬進料氣體之空氣體積流速為40 L/min 81
5-3-2模擬進料氣體之空氣體積流速為50 L/min 84
5-3-3模擬進料氣體之空氣體積流速為60 L/min 86
5-3-4模擬進料氣體之空氣體積流速為70 L/min 88
5-3-5模擬進料氣體之空氣體積流速為80 L/min 90
5-3-6 比較不同空氣體積流速之進料氣體對模擬結果之影響 92
5-4改變進料液體之熱水體積流速對模擬結果之影響 96
5-4-1模擬進料液體之熱水體積流速為0.1 L/min 96
5-4-2模擬進料液體之熱水體積流速為0.2 L/min 99
5-4-3模擬進料液體之熱水體積流速為0.3 L/min 101
5-4-4模擬進料液體之熱水體積流速為0.4 L/min 103
5-4-5模擬進料液體之熱水體積流速為0.5 L/min 105
5-4-6 比較不同熱水體積流速之進料液體對模擬結果之影響 107
5-5改變進料液體之熱水溫度對模擬結果之影響 111
5-5-1模擬進料液體之熱水溫度為40 ℃ 111
5-5-2模擬進料液體之熱水溫度為45 ℃ 114
5-5-3模擬進料液體之熱水溫度為50 ℃ 116
5-5-4模擬進料液體之熱水溫度為55 ℃ 118
5-5-5模擬進料液體之熱水溫度為60 ℃ 120
5-5-6 比較不同熱水溫度之進料液體對模擬結果之影響 122
5-6改變進料氣體與液體之體積流速比例對模擬結果之影響 125
5-6-1模擬進料氣體與液體之體積流速比例為40/0.2 125
5-6-2模擬進料氣體與液體之體積流速比例為50/0.2 128
5-6-3模擬進料氣體與液體之體積流速比例為60/0.2 130
5-6-4模擬進料氣體與液體之體積流速比例為40/0.1 132
5-6-5模擬進料氣體與液體之體積流速比例為50/0.1 134
5-6-6模擬進料氣體與液體之體積流速比例為60/0.1 136
5-6-7 比較不同之進料氣體與液體體積流速比例對模擬結果之影響 138
第六章 實驗結果與討論 143
6-1特定操作條件 144
6-1-1特定操作條件下之實驗結果 144
6-1-2特定操作條件下之實驗結果與模擬結果之比較 147
6-2進料氣體之相對濕度 148
6-2-1改變進料氣體之相對濕度對實驗結果之影響 148
6-2-2進料氣體之相對濕度對實驗與模擬之影響比較 152
6-3進料氣體之空氣體積流速 154
6-3-1改變進料氣體之空氣體積流速對實驗結果之影響 154
6-3-2進料氣體之空氣體積流速對實驗與模擬之影響比較 157
6-4進料液體之熱水體積流速 161
6-4-1改變進料液體之熱水體積流速對實驗結果之影響 161
6-4-2進料液體之熱水體積流速對實驗與模擬之影響比較 165
6-5進料液體之熱水溫度 169
6-5-1改變進料液體之熱水溫度對實驗結果之影響 169
6-5-2進料液體之熱水溫度對實驗與模擬之影響比較 172
6-6進料氣體與液體之體積流速比例 176
6-6-1改變進料氣體與液體之體積流速比例對實驗結果之影響 176
6-6-2進料氣體與液體之體積流速比例對實驗與模擬之影響比較 180
第七章 結論 185
參考文獻 188
符號說明 194








圖目錄
圖1.1 程序強化之項目 1
圖2-1-1.1 逆流式旋轉填充床 5
圖2-1-1.2 錯流式旋轉填充床 5
圖2-1-1.3分離填充物旋轉填充床 6
圖2-1-1.4葉片狀填充物旋轉填充床 7
圖2-1-1.5鋸齒狀旋轉填充床Rotating Zigzag Bed,RZB 8
圖2-1-1.6多層鋸齒狀旋轉填充床 8
圖2-1-2.1 壓降在不同操作狀態下之實驗結果 9
圖2-1-2.2 旋轉填充床壓降隨轉速變化之特性 10
圖2-1-2.3 壓降與氣體流速關係圖 11
圖2-1-3.1液體在旋轉填充床流動模式示意圖 12
圖2-1-3.2 假設的旋轉填充床模型 13
圖2-1-3.3壓降與液體滯留量隨氣體流量變化關係圖 14
圖2-1-3.4利用壓降去預測液體滯流量與實驗之液體滯留量比較圖 14
圖2-1-6.1不同混合器之微觀混合效果比較 22
圖2-1-6.2撞擊流-旋轉填充床 23
圖3-1-1 進料出料氣液體相關之變數於冷卻水塔內之位置關係圖 33
圖3-1-2 進料出料氣液體相關之變數於旋轉填充床內之位置關係圖 37
圖3-2-1.1雙膜理論示意圖 42
圖4-1.1 旋轉填充床主體裝置圖 51
圖4-2.1 iButton®元件之尺寸數據 53
圖4-3.1溫度記錄器(DS1921G)於旋轉填充床床體之 (A)下視圖 (B)上視圖 55
圖4-3.2溫濕度記錄器(DS1923)置於矽膠管內 56
圖4-3.3實驗過程中溫度記錄器(DS1921G)所測得之T_iButton原始數據 57
圖4-3.4實驗流程圖 58
圖5.1 進料出料氣液體相關之變數與旋轉填充床內外半徑之間的關係 59
圖5-1 模擬旋轉填充床內部, (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量,隨徑向變化之情形 66
圖5-1 模擬旋轉填充床內部, (C)液體之質量流速,隨徑向變化之情形 67
圖5-2-1模擬R.H. = 10%時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 70
圖5-2-2模擬R.H. = 30%時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 72
圖5-2-3 模擬R.H. = 40%時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 74
圖5-2-4 模擬R.H. = 60%時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 76
圖5-2-5 比較不同相對濕度之進料氣體,對模擬旋轉填充床內部 (A)每單位質量的乾空氣所具有的水蒸氣質量 (B)液體之質量流速,隨徑向變化之影響 78
圖5-2-5 比較不同相對濕度之進料氣體,對模擬旋轉填充床內部 (C)液體溫度 (D)氣體溫度,隨徑向變化之影響 79
圖5-3-1 模擬G =40 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 82
圖5-3-2 模擬G =50 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 84
圖5-3-3 模擬G =60 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 86
圖5-3-4 模擬G =70 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 88
圖5-3-5 模擬G =80 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 90
圖5-3-6 比較不同體積流速之進料氣體,對模擬旋轉填充床內部 (A)液體之質量流速 (B)每單位質量的乾空氣所具有的水蒸氣質量,隨徑向變化之影響 93
圖5-3-6 比較不同體積流速之進料氣體,對模擬旋轉填充床內部 (C)液體溫度 (D)氣體溫度,隨徑向變化之影響 95
圖5-4-1 模擬L = 0.1 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 97
圖5-4-2 模擬L = 0.2 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 99
圖5-4-3 模擬L = 0.3 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 101
圖5-4-4 模擬L = 0.4 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 103
圖5-4-5 模擬L = 0.5 L/min時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 105
圖5-4-6 比較不同體積流速之進料液體,對模擬旋轉填充床內部 (A)每單位質量的乾空氣所具有的水蒸氣質量 (B)液體之質量流速,隨徑向變化之影響 108
圖5-4-6 比較不同體積流速之進料液體,對模擬旋轉填充床內部 (C)氣體溫度 (D)液體溫度,隨徑向變化之影響 110
圖5-5-1 模擬Tw = 40℃時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 ..112
圖5-5-2 模擬Tw = 45℃時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形.. 114
圖5-5-3 模擬Tw = 50℃時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 ..116
圖5-5-4模擬Tw = 55℃時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形.. 118
圖5-5-5模擬Tw = 60℃,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 …..120
圖5-5-6比較不同熱水溫度之進料液體,對模擬旋轉填充床內部 (A)液體溫度 (B)氣體溫度,隨徑向變化之影響 123
圖5-5-6 比較不同熱水溫度之進料液體,對模擬旋轉填充床內部 (C)液體之質量流速 (D)每單位質量的乾空氣所具有的水蒸氣質量,隨徑向變化之影響 123
圖5-6-1 模擬G/L= 40/0.2時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 126
圖5-6-2 模擬G/L = 50/0.2時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 128
圖5-6-3 模擬G/L = 60/0.2時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 130
圖5-6-4模擬G/L = 40/0.1時,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 132
圖5-6-5模擬G/L = 50/0.1,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形.. 134
圖5-6-6模擬G/L = 60/0.1,旋轉填充床內部 (A)液體溫度與氣體溫度 (B)每單位質量的乾空氣所具有的水蒸氣質量 (C)液體之質量流速,隨徑向變化之情形 ..136
圖5-6-7 比較不同之進料氣體與液體體積流速比,對模擬旋轉填充床內部液體之質量流速,隨徑向變化之影響;進料液體之體積流速為(A) 0.2 L/min (B) 0.1 L/min 139
圖5-6-7比較不同之進料氣體與液體體積流速比,對模擬旋轉填充床內部 (C)每單位質量的乾空氣所具有的水蒸氣質量 (D)液體溫度,隨徑向變化之影響 140
圖5-6-7 比較不同之進料氣體與液體體積流速比,對模擬旋轉填充床內部(E)氣體溫度,隨徑向變化之影響 141
圖6.1 溫度記錄器(iButton® DS1921G)於床體內部之位置 142
圖6-1-1 轉速為 (A) 500 rpm (B) 800 rpm時,旋轉填充床內部之T_iButton 隨徑向變化之情形 145
圖6-1-1 轉速為 (C) 1000 rpm (D) 1300 rpm時,旋轉填充床內部之T_iButton隨徑向變化之情形 146
圖6-1-2 轉速為800 rpm時,實驗量測旋轉填充床內部之T_iButton 與模擬旋轉填充床內部之Tw 、Ta與T_(iButton,est),隨徑向變化之情形 147
圖6-2-1 轉速為 (A) 500 rpm (B) 800 rpm時,不同相對濕度之進料氣體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 150
圖6-2-1 轉速為 (C) 1000 rpm (D) 1300 rpm時,不同相對濕度之進料氣體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 151
圖6-2-2 轉速為800 rpm時,不同相對濕度之進料氣體對實驗與模擬結果之影響(A) 實驗量測之Ta,out;與模擬床體內部之Ta隨徑向變化之情形 (B) 實驗量測之Xa,out、Xa,in;與模擬床體內部之Xa隨徑向變化之情形 153
圖6-3-1 轉速為 (A) 500 rpm時,不同空氣體積流速之進料氣體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 155
圖6-3-1 轉速為 (B) 800 rpm (C) 1000 rpm時,不同空氣體積流速之進料氣體下,旋轉填充床內部之T_iButton隨徑向變化之情形 156
圖6-3-1 轉速為 (D) 1300 rpm時,不同空氣體積流速之進料氣體下,旋轉填充床內部之T_iButton隨徑向變化之情形 157
圖6-3-2 轉速為800 rpm時,不同體積流速之進料氣體對實驗與模擬結果之影響 (A) 床體內部實驗量測之T_iButton與模擬之Tw、Ta,隨徑向變化之情形 (B) 實驗量測之Ta,out;與模擬床體內部之Ta隨徑向變化之情形 160
圖6-3-2 轉速為800 rpm時,不同體積流速之進料氣體對實驗與模擬結果之影響 (C) 實驗量測之Xa,out;與模擬床體內部之Xa隨徑向變化之情形 161
圖6-4-1 轉速為 (A) 500 rpm (B) 800 rpm時,不同熱水體積流速之進料液體下,旋轉填充床內部之T_iButton隨徑向變化之情形 163
圖6-4-1 轉速為 (C) 1000 rpm (D) 1300 rpm時,不同熱水體積流速之進料液體下,旋轉填充床內部之T_iButton隨徑向變化之情形 164
圖6-4-2轉速為800 rpm時,不同體積流速之進料液體對實驗與模擬結果之影響 (A) 床體內部實驗量測之T_iButton與模擬之Tw、Ta,隨徑向變化之情形 167
圖6-4-2轉速為800 rpm時,不同體積流速之進料液體對實驗與模擬結果之影響
(B) 實驗量測之Ta,out;與模擬床體內部之Ta隨徑向變化之情形(C) 實驗量測之Xa,out;與模擬床體內部之Xa隨徑向變化之情形 168
圖6-5-1 轉速為 (A) 500 rpm時,不同熱水溫度之進料液體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 170
圖6-5-1 轉速為 (B) 800 rpm (C) 1000 rpm時,不同熱水溫度之進料液體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 171
圖6-5-1 轉速為 (D) 1300 rpm時,不同熱水溫度之進料液體下, 旋轉填充床內部之T_iButton隨徑向變化之情形 172
圖6-5-2轉速為800 rpm時,不同熱水溫度之進料液體對實驗與模擬結果之影響 (A) 床體內部實驗量測之T_iButton與模擬之Tw、Ta,隨徑向變化之情形 (B) 實驗量測之Ta,out;與模擬床體內部之Ta隨徑向變化之情形 175
圖6-5-2轉速為800 rpm時,不同熱水溫度之進料液體對實驗與模擬結果之影響 (C) 實驗量測之Xa,out;與模擬床體內部之Xa隨徑向變化之情形 176
圖6-6-1 轉速為 (A) 500 rpm時,不同之進料氣液體體積流速比下, 旋轉填充床內部之T_iButton隨徑向變化之情形 178
圖6-6-1 轉速為 (B) 800 rpm (C) 1000 rpm時,不同之進料氣液體體積流速比下,旋轉填充床內部之T_iButton隨徑向變化之情形 179
圖6-6-1 轉速為 (D) 1300 rpm時,不同之進料氣液體體積流速比下, 旋轉填充床內部之T_iButton隨徑向變化之情形 180
圖6-6-2轉速為800 rpm時,不同進料氣液體積流速比對實驗與模擬結果之影響 (A) 床體內部實驗量測之T_iButton與模擬之Tw、Ta,隨徑向變化之情形 (B) 實驗量測之Ta,out;與模擬床體內部之Ta隨徑向變化之情形 183
圖6-6-2轉速為800 rpm時,不同進料氣液體積流速比對實驗與模擬結果之影響 (C) 實驗量測之Xa,out;與模擬床體內部之Xa隨徑向變化之情形 184






表目錄
表2-1-7.1 旋轉填充床應用於吸收與氣提程序 24
表2-1-7.1 旋轉填充床應用於吸收與氣提程序(續) 24
表2-1-7.2 旋轉填充床應用於蒸餾程序 25
表2-1-7.3 旋轉填充床應用於吸附與脫附程序 26
表2-1-7.4 旋轉填充床應用於結晶與顆粒製備 27
表2-1-7.4 旋轉填充床應用於結晶與顆粒製備(續) 27
表2-1-7.5 旋轉填充床之其他應用 28
表2-1-7.5 旋轉填充床之其他應用(續) 28
表4-1 旋轉填充床規格 50
表6-1-2 模擬計算所得到的T_(iButton,est)與實驗量測所得到的T_iButton之比較 147
表6-2-1.1進料氣體之相對濕度為40%時之實驗數據 148
表6-2-1.2進料氣體之相對濕度為30%時之實驗數據 148
表6-3-1.1進料氣體之空氣體積流速為50 L/min時之實驗數據 154
表6-3-1.2進料氣體之空氣體積流速為70 L/min時之實驗數據 154
表6-3-2.1進料空氣體積流速為50 L/min時,T_(iButton,est)與T_iButton之比較 158
表6-3-2.2進料空氣體積流速為70 L/min時,T_(iButton,est)與T_iButton之比較 158
表6-4-1.1進料液體之熱水體積流速為0.1 L/min時之實驗數據 162
表6-4-1.2進料液體之熱水體積流速為0.2 L/min時之實驗數據 162
表6-4-2.1進料液體之體積流速為0.1 L/min時,T_(iButton,est)與T_iButton之比較 165
表6-4-2.2進料液體之體積流速為0.2 L/min時,T_(iButton,est)與T_iButton之比較 166
表6-5-1.1進料液體之熱水溫度為50℃時之實驗數據 169
表6-5-1.2進料液體之熱水溫度為40℃時之實驗數據 169
表6-5-2.1進料液體之熱水溫度為40℃時,T_(iButton,est)與T_iButton之比較 173
表6-5-2.2進料液體之熱水溫度為50℃時,T_(iButton,est)與T_iButton之比較 173
表6-6-1.1進料氣體與液體之體積流速比為40/0.2時之實驗數據 177
表6-6-1.2進料氣體與液體之體積流速比為60/0.2時之實驗數據 177
表6-6-1.3進料氣體與液體之體積流速比為60/0.1時之實驗數據 177
表6-6-2.1進料氣液體積流速比例為40 /20時,T_(iButton,est)與T_iButton之比較 181
表6-6-2.2進料氣液體積流速比例為60 /20時,T_(iButton,est)與T_iButton之比較 181
表6-6-2.3進料氣液體積流速比例為60 /10時,T_(iButton,est)與T_iButton之比較 181
dc.language.isozh-TW
dc.subject旋轉填充床zh_TW
dc.subject熱質傳數學模型zh_TW
dc.subject床體內部之溫度量測zh_TW
dc.subjectthe measurement of temperature in the RPBlen
dc.subjectrotating packed bed(RPB)en
dc.subjectHIGEEen
dc.subjectthe heat and mass transfer modeen
dc.title旋轉填充床內部之溫度分佈zh_TW
dc.titleThe Temperature Profile in a Rotating Packed Beden
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昱劭,林佳璋
dc.subject.keyword旋轉填充床,熱質傳數學模型,床體內部之溫度量測,zh_TW
dc.subject.keywordrotating packed bed(RPB),HIGEE,the heat and mass transfer mode,the measurement of temperature in the RPBl,en
dc.relation.page199
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved