Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王興國(Hsing-Kuo Wang)
dc.contributor.authorNai-Hao Yinen
dc.contributor.author尹乃鎬zh_TW
dc.date.accessioned2021-06-16T23:21:43Z-
dc.date.available2017-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation1. Einhorn TA, O'Keefe RJ, Buckwalter JA. Orthopaedic basic science : foundations of clinical practice. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2007.
2. Maffulli N, Renstrom P, Leadbetter WB. Tendon Injuries: Basic Science and Clinical Medicine. 1st ed. UK: Springer; 2005.
3. Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology. Vol 1. 12th ed. NJ: John Wiley & Sons; 2008.
4. James S, Bates B, Osternig L. Injuries to runners. Am J Sports Med 1978;6:40-50.
5. Gruchow H, Pelletier D. An epidemiologic study of tennis elbow. Incidence, recurrence, and effectiveness of prevention strategies. Am J Sports Med 1979;7:234-8.
6. Trestik C, Lieber R. Relationship between Achilles tendon mechanical properties and gastrocnemius muscle function. J Biomech Eng 1993;115:225-30.
7. Johnson Ga, Tramaglini DM, Levine RE, Ohno K, Choi NY, Woo SL. Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 1994;12:796-803.
8. Narici MV, Maffulli N, Maganaris CN. Ageing of human muscles and tendons. Disabil Rehabil 2008;30:1548-54.
9. Astrom M, Westlin N. Blood flow in chronic Achilles tendinopathy. Clin Orthop 1994;308:166-72.
10. Knobloch K, Kraemer R, Lichtenberg A, Jagodzinski M, Gossling T, Richter M, et al. Achilles tendon and paratendon microcirculation in midportion and insertional tendinopathy in athletes. Am J Sports Med 2006;34:92-7.
11. Carr A, Norris S. The blood supply of the calcaneal tendon. J Bone Joint Surg Br 1989;71:100-1.
12. Divani K, Chan O, Padhiar N, Twycross-Lewis R, Maffulli N, Crisp T, et al. Site of maximum neovascularisation correlates with the site of pain in recalcitrant mid-tendon Achilles tendinopathy. Man Ther 2010;15:463-68.
13. Woo SLY, Renstrom P, Arnoczky SP. Tendinopathy in athletes. Malden, Mass.: Blackwell Pub.; 2007.
14. Langberg H, Bjorn C, Boushel R, Hellsten Y, Kjar M. Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans. J Physiol 2002;542:977-83.
15. Boushel R, Langberg H, Olesen J, Nowak M, Simonsen L, Bulow J, et al. Regional blood flow during exercise in humans measured by near-infrared spectroscopy and indocyanine green. J Appl Physiol 2000;89:1868-78.
16. Boushel R, Langberg H, Green S, Skovgaard D, Bulow J, Kjar M. Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J Physiol 2000;524:305-13.
17. Kubo K, Ikebukuro T, Yaeshima K, Kanehisa H. Effects of different duration contractions on elasticity, blood volume, and oxygen saturation of human tendon in vivo. Eur J Appl Physiol 2009;106:445-55.
18. Ross MH, Pawlina W. Histology: A Text and Atlas. 5th ed. Philadelphia: Lippincott Willians & Wilkins; 2006.
19. Liu SH, Yang RS, Al-Shaikh R, Lane JM. Collagen in tendon, ligament, and bone healing: A current review. Clin Orthop 1995;318:265-78.
20. Eastoe JE. The amino acid composition of mammalian collagen and gelatin. Biochem J 1955;61:589-600.
21. Daniel DM, Akeson WH, O'Connor JJ. Knee Ligaments: Structure, Function, Injury and Repair. 1st ed. New York: Raven Press; 1990.
22. Kastelic J, Galeski A, Baer E. The multicomposite structure of tendon. Connect Tissue Res 1978;6:11-23.
23. Butler D, Grood E, Noyes F, Zernicke R. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev 1978;6:125-81.
24. Watkins J. Structure and function of the musculoskeletal system. 2nd ed. Champaign, IL: Human Kinetics; 2010.
25. Silver FH, Freeman JW, Seehra GP. Collagen self-assembly and the development of tendon mechanical properties. J Biomech 2003;36:1529-53.
26. Langberg H, Bulow J, Kjar M. Blood flow in the peritendinous space of the human Achilles tendon during exercise. Acta Physiol Scand 1998;163:149-53.
27. Langberg H, Skovgaard D, Karamouzis M, Bulow J, Kjar M. Metabolism and inflammatory mediators in the peritendinous space measured by microdialysis during intermittent isometric exercise in humans. J Physiol 1999;515:919-27.
28. Clark MG, Clerk LH, Newman JM, Rattigan S. Interaction between metabolism and flow in tendon and muscle. Scand J Med Sci Sports 2000;10:338-45.
29. Chen TM, Rozen WM, Pan W-R, Ashton MW, Richardson MD, Taylor GI. The arterial anatomy of the Achilles tendon: anatomical study and clinical implications. Clin Anat 2009;22:377-85.
30. Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 2005;87:187-202.
31. Edwards D. The blood supply and lymphatic drainage of tendons. J Anat 1946;80:147-54.
32. Brockis J. The blood supply of the flexor and extensor tendons of the fingers in man. J Bone Joint Surg Br 1953;35:131-8.
33. Muramatsu T, Muraoka T, Takeshita D, Kawakami Y, Hirano Y, Fukunaga T. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscle in vivo. J Appl Physiol 2001;90:1671-8.
34. Maganaris CN, Paul JP. In vivo human tendon mechanical properties. J Physiol 1999;521:307-13.
35. Fukunaga T, Ito M, Ichinose Y, Kuno S, Kawakami Y, Fukashiro S. Tendinous movement of a human muscle during voluntary contractions determined by real-time ultrasonography. J Appl Physiol 1996;81:1430-3.
36. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J Appl Physiol 2001;90:520-7.
37. Burgess K, Pearson SJ, Breen L, Onambele G. Tendon structural and mechanical properties do not differ between genders in a healthy community-dwelling elderly population. J Orthop Res 2009;27:820-5.
38. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol 2003;548:971-81.
39. Wu YK, Lien YH, Lin KH, Shih TT, Wang TG, Wang HK. Relationships between three potentiation effects of plyometric training and performance. Scand J Med Sci Sports 2010;20:e80-6.
40. Mademli L, Arampatzis A. Behaviour of the human gastrocnemius muscle architecture during submaximal isometric fatigue. Eur J Appl Physiol 2005;94:611-7.
41. Magnusson S, Hansen P, Aagaard P, Brond J, Dyhre-Poulsen P, Bojsen-Moller J, et al. Differential strain patterns of the human gastrocnemius aponeurosis and free tendon, in vivo. Acta Physiol Scand 2003;177:185-95.
42. Burgess KE, Connick MJ, Graham-Smith P, Pearson SJ. Plyometric vs. isometric training influences on tendon properties and muscle output. J Strength Cond Res 2007;21:986-9.
43. Foure A, Nordez A, Cornu C. Plyometric training effects on Achilles tendon stiffness and dissipative properties. J Appl Physiol 2010;109:849-54.
44. Foure A, Nordez A, McNair P, Cornu C. Effects of plyometric training on both active and passive parts of the plantarflexors series elastic component stiffness of muscle-tendon complex. Eur J Appl Physiol 2011;111:539-48.
45. Child S, Bryant AL, Clark Ra, Crossley KM. Mechanical properties of the achilles tendon aponeurosis are altered in athletes with achilles tendinopathy. Am J Sports Med 2010;38:1885-93.
46. Arya S, Kulig K. Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol 2010;108:670-5.
47. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Effects of repeated muscle contractions on the tendon structures in humans. Eur J Appl Physiol 2001;84:162-6.
48. Kubo K, Ohgo K, Takeishi R, Yoshinaga K, Tsunoda N, Kanehisa H, et al. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scand J Med Sci Sports 2006;16:159-67.
49. Reeves ND, Narici MV, Maganaris CN. Strength training alters the viscoelastic properties of tendons in elderly humans. Muscle Nerve 2003;28:74-81.
50. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, et al. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol 2009;107:523-30.
51. Sullivan BE, Carroll CC, Jemiolo B, Trappe SW, Magnusson SP, Dossing S, et al. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. J Appl Physiol 2009;106:468-75.
52. Pearson SJ, Burgess K, Onambele GNL. Creep and the in vivo assessment of human patellar tendon mechanical properties. Clin Biomech (Bristol, Avon) 2007;22:712-7.
53. Carroll CC, Dickinson JM, Haus JM, Lee Ga, Hollon CJ, Aagaard P, et al. Influence of aging on the in vivo properties of human patellar tendon. J Appl Physiol 2008;105:1907-15.
54. Reeves ND, Maganaris CN, Maffulli N, Rittweger J. Human patellar tendon stiffness is restored following graft harvest for anterior cruciate ligament surgery. J Biomech 2009;42:797-803.
55. Couppe C, Kongsgaard M, Aagaard P, Hansen P, Bojsen-Moller J, Kjaer M, et al. Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J Appl Physiol 2008;105:805-10.
56. Westh E, Kongsgaard M, Bojsen-Moller J, Aagaard P, Hansen M, Kjaer M, et al. Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women. Scand J Med Sci Sports 2008;18:23-30.
57. Svantesson U, Carlsson U, Takahashi H, Thomee R, Grimby G. Comparison of muscle and tendon stiffness, jumping ability, muscle strength and fatigue in the plantar flexors. Scand J Med Sci Sports 1998;8:252-6.
58. Fletcher JR, Esau SP, MacIntosh BR. Changes in tendon stiffness and running economy in highly trained distance runners. Eur J Appl Physiol 2010;110:1037-46.
59. Ahmed I, Lagopoulos M, McConnell P, Soames R, Sefton G. Blood supply of the Achilles tendon. J Orthop Res 1998;16:591-96.
60. Scapinelli R. The arterial blood supply of the human patella. J Bone Joint Surg Br 1967;49B:563-70.
61. Pang J, Shen S, Pan WR, Jones IR, Rozen WM, Taylor GI. The arterial supply of the patellar tendon: anatomical study with clinical implications for knee surgery. Clin Anat 2009;22:371-6.
62. Soldado F, Reina F, Yuguero M, Rodriguez-Baeza a. Clinical anatomy of the arterial supply of the human patellar ligament. Surg Radiol Anat 2002;24:177-82.
63. Caro CG. The Mechanics of the circulation. New York: Oxford University Press; 1978.
64. Fung YC, Zweifach BW, Intaglietta M. Elastic Environment of the Capillary Bed. Circ Res 1966;19:441-61.
65. Skalak R, Ozkaya N, Skalak TC. Biofluid Mechanics. Annu Rev Fluid Mech 1989;21:167-204.
66. Levy MN, Pappano AJ, Berne RM. Cardiovascular physiology. Philadelphia, PA: Mosby Elsevier; 2007.
67. Levick JR. An introduction to cardiovascular physiology. London: Hodder Arnold; 2010.
68. Astrom M, Westlin N. Blood flow in the human Achilles tendon assessed by laser Doppler flowmetry. J Orthop Res 1994;12:246-52.
69. Langberg H, Bulow J, Kjar M. Standardized intermittent static exercise increases peritendinous blood flow in human leg. Clin Physiol 1999;19:89-93.
70. Langberg H, Skovgaard D, Bulow J, Kjar M. Negative interstitial pressure in the peritendinous region during exercise. J Appl Physiol 1999;87:999-1002.
71. Kubo K, Ikebukuro T, Tsunoda N, Kanehisa H. Noninvasive measures of blood volume and oxygen saturation of human Achilles tendon by red laser lights. Acta Physiol (Oxf) 2008;193:257-64.
72. Kubo K, Ikebukuro T, Yaeshima K, Yata H, Tsunoda N, Kanehisa H. Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. J Appl Physiol 2009;106:412-7.
73. Knobloch K, Schreibmueller L, Meller R, Busch KH, Spies M, Vogt PM. Superior Achilles tendon microcirculation in tendinopathy among symptomatic female versus male patients. Am J Sports Med 2008;36:509-14.
74. Ohberg L, Lorentzon R, Alfredson H. Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg Sports Traumatol Arthrosc 2001;9:233-38.
75. Alfredson H, Ohberg L, Forsgren S. Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg Sports Traumatol Arthrosc 2003;11:334-8.
76. van Wilgen P, van der Noord R, Zwerver J. Feasibility and reliability of pain pressure threshold measurements in patellar tendinopathy. J Sci Med Sport 2011:doi:10.1016/j.jsams.2011.05.004.
77. Suzuki S. Tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE 1999;3597:582-92.
78. Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjar M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 2001;11:213-22.
79. Kashima S. Spectroscopic measurement of blood volume and its oxygenation in a small volume of tissue using red laser lights and differential calculation between two point detections. Opt Laser Technol 2003;35:485-89.
80. McCully KK, Hamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev 2000;28:123-7.
81. Lippold O. The relationship between integrated action potentials in a human muscle and its isometric tension. J Physiol (Lond) 1952;177:492-9.
82. De Blasi Ra, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A. Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol 1994;76:1388-93.
83. Tew Ga, Ruddock AD, Saxton JM. Skin blood flow differentially affects near-infrared spectroscopy-derived measures of muscle oxygen saturation and blood volume at rest and during dynamic leg exercise. Eur J Appl Physiol 2010;110:1083-9.
84. Ferrari M, Mottola L, Quaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol 2004;29:463-87.
85. Matcher S, Kirkpatrick P, Nahid K, Cope M, Delpy D. Absolute quantification methods in tissue near-infrared spectroscopy. Proc SPIE 1995;2389:486-95.
86. Boushel R, Piantadosi C. Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiol Scand 2000;168:615-22.
87. Homma S, Eda H, Ogasawara S, Kagaya a. Near-infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity. J Appl Physiol 1996;80:1279-84.
88. Tichauer KM, Hadway Ja, Lee T-Y, St Lawrence K, Lawrence KS. Measurement of cerebral oxidative metabolism with near-infrared spectroscopy: a validation study. J Cereb Blood Flow Metab 2006;26:722-30.
89. Elliott JT, Diop M, Tichauer KM, Lee T-Y, St Lawrence K. Quantitative measurement of cerebral blood flow in a juvenile porcine model by depth-resolved near-infrared spectroscopy. J Biomed Opt 2010;15:037014.
90. Rasmussen P, Dawson Ea, Nybo L, van Lieshout JJ, Secher NH, Gjedde A. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 2007;27:1082-93.
91. Chakravarti S, Srivastava S, Mittnacht aJC. Near Infrared Spectroscopy (NIRS) in Children. Semin Cardiothorac Vasc Anesth 2008;12:70-79.
92. Durduran T, Zhou C, Buckley EM, Kim MN, Yu G, Choe R, et al. Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects. J Biomed Opt 2010;15:037004.
93. Mittnacht AJC. Near infrared spectroscopy in children at high risk of low perfusion. Curr Opin Anaesthesiol 2010;23:342-7.
94. Knobloch K, Lichtenberg A, Pichlmaier M, Mertsching H, Krug A, Klima U, et al. Microcirculation of the sternum following harvesting of the left internal mammary artery. Thorac Cardiovasc Surg 2003;51:255-9.
95. Eston RG, Mickleborough J, Baltzopoulos V. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. Br J Sports Med 1995;29:89-94.
96. Armstrong R, Ogilvie R, Schwane J. Eccentric exercise-induced injury to rat skeletal muscle. J Appl Physiol 1983;51:80-93.
97. Masuda K, Masuda T, Sadoyama T, Inaki M, Katsuta S. Changes in surface EMG parameters during static and dynamic fatiguing contractions. J Electromyogr Kinesiol 1999;9:39-46.
98. Jones C, Allen T, Talbot J, Morgan DL, Proske U. Changes in the mechanical properties of human and amphibian muscle after eccentric exercise. Eur J Appl Physiol 1997;76:21-31.
99. Chleboun GS, Howell JN, Conatser RR, Giesey JJ. Relationship between muscle swelling and stiffness after eccentric exercise. Med Sci Sports Exerc 1998;30:529-35.
100. Blais C, Adam A, Massicotte D. Increase in blood bradykinin concentration after eccentric weight-training exercise in men. J Appl Physiol 1999;87:1197-201.
101. Asp S, Daugaard JR, Richter EA. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J Physiol 1995;482.3:705-12.
102. MacIntyre DL, Reid WDD, Lyster DM, Szasz IJ, McKenzie DC. Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exercise. J Appl Physiol 1996;80:1006-13.
103. Nosaka K, Clarkson PM. Changes in indicators of inflammation after eccentric exercise of the elbow flexors. Med Sci Sports Exerc 1996;28:953-61.
104. Chen TC, Hsieh SS. Effects of a 7-day eccentric training period on muscle damage and inflammation. Med Sci Sports Exerc 2001;33:1732-8.
105. Bruunsgaard H, Galbo HBH, Halkjaer-Kristensen J, Johansen TL, MacLean DA, Pedersen BK. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage. J Physiol 1997;499:833-41.
106. Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 1998;508:949-53.
107. Smith LL, Anwar a, Fragen M, Rananto C, Johnson R, Holbert D. Cytokines and cell adhesion molecules associated with high-intensity eccentric exercise. Eur J Appl Physiol 2000;82:61-7.
108. Stupka N, Lowther S, Chorneyko K, Bourgeois JM, Hogben C, Tarnopolsky Ma. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol 2000;89:2325-32.
109. Sayers SP, Clarkson PM. Force recovery after eccentric exercise in males and females. Eur J Appl Physiol 2001;84:122-6.
110. Grant M-E. Isokinetic Injury Rehabilitation Jumping Hurdles and Moving Forwards. Proceedings of IPRS Isokinetic Conference; 2009 Sep 5; Dublin, Ireland; 2009.
111. Grigg NL, Wearing SC, Smeathers JE. Eccentric calf muscle exercise produces a greater acute reduction in Achilles tendon thickness than concentric exercise. Br J Sports Med 2009;43:280-3.
112. Lund H, Vestergaard-Poulsen P, Kanstrup IL, Sejrsen P. Isokinetic eccentric exercise as a model to induce and reproduce pathophysiological alterations related to delayed onset muscle soreness. Scand J Med Sci Sports 1998;8:208-15.
113. Paddon-Jones D, Keech A, Lonergan A, Abernethy P. Differential expression of muscle damage in humans following acute fast and slow velocity eccentric exercise. J Sci Med Sport 2005;8:255-63.
114. Semmler JG, Tucker KJ, Allen TJ, Proske U. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol 2007;103:979-89.
115. Power Ga, Dalton BH, Rice CL, Vandervoort Aa. Delayed recovery of velocity-dependent power loss following eccentric actions of the ankle dorsiflexors. J Appl Physiol 2010;109:669-76.
116. Piitulainen H, Bottas R, Komi P, Linnamo V, Avela J. Impaired action potential conduction at high force levels after eccentric exercise. J Electromyogr Kinesiol 2010;20:879-87.
117. Baltzopoulos V. A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin Biomech (Bristol, Avon) 1995;10:85-92.
118. Krevolin JL, Pandy MG, Pearce JC. Moment arm of the patellar tendon in the human knee. J Biomech 2004;37:785-8.
119. De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech 1997;13:135-63.
120. Criswell E, Cram J. Cram's introduction to surface electromyography. 2nd ed. Sudbury, MA: Jones and Bartlett; 2011.
121. Lariviere C, Arsenault aB, Gravel D, Gagnon D, Loisel P. Evaluation of measurement strategies to increase the reliability of EMG indices to assess back muscle fatigue and recovery. J Electromyogr Kinesiol 2002;12:91-102.
122. Lariviere C, Gagnon D, Gravel D, Bertrand Arsenault a. The assessment of back muscle capacity using intermittent static contractions. Part I - Validity and reliability of electromyographic indices of fatigue. J Electromyogr Kinesiol 2008;18:1006-19.
123. Lariviere C, Gravel D, Gagnon D, Arsenault aB. The assessment of back muscle capacity using intermittent static contractions. Part II: validity and reliability of biomechanical correlates of muscle fatigue. J Electromyogr Kinesiol 2008;18:1020-31.
124. Flansbjer U-B, Holmback AM, Downham D, Lexell J. What change in isokinetic knee muscle strength can be detected in men and women with hemiparesis after stroke? Clin Rehabil 2005;19:514-22.
125. Bilodeau M. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J Electromyogr Kinesiol 2003;13:83-92.
126. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 2002;93:1318-26.
127. Kaneko F, Onari K, Kawaguchi K, Tsukisaka K, Roy SH. Electromechanical delay after ACL reconstruction: an innovative method for investigating central and peripheral contributions. J Orthop Sports Phys Ther 2002;32:158-65.
128. Kubo K, Kanehisa H, Kawakami Y, Fukunaga T. Influences of repetitive muscle contractions with different modes on tendon elasticity in vivo. J Appl Physiol 2001;91:277-82.
129. Bojsen-Moller J, Hansen P, Aagaard P, Kjaer M, Magnusson S. Measuring mechanical properties of the vastus lateralis tendon-aponeurosis complex in vivo by ultrasound imaging. Scand J Med Sci Sports 2003;13:259-65.
130. O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Mechanical properties of the patellar tendon in adults and children. J Biomech 2010;43:1190-5.
131. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, et al. Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 2009;107:880-6.
132. Onambele GNL, Burgess K, Pearson SJ. Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J Orthop Res 2007;25:1635-42.
133. Mitsukawa N, Sugisaki N, Kanehisa H, Fukunaga T, Kawakami Y. Fatigue-related changes in fascicle-tendon geometry over repeated contractions: difference between synergist muscles. Muscle Nerve 2009;40:395-401.
134. Mademli L, Arampatzis A, Walsh M. Effect of muscle fatigue on the compliance of the gastrocnemius medialis tendon and aponeurosis. J Biomech 2006;39:426-34.
135. Mitsukawa N, Sugisaki N, Miyamoto N, Yanai T, Kanehisa H, Fukunaga T, et al. Fatigue-induced changes in synergistic muscle force do not match tendon elongation. J Biomech 2010;43:1632-34.
136. Hansen P, Bojsen-Moller J, Aagaard P, Kjar M, Magnusson SP. Mechanical properties of the human patellar tendon, in vivo. Clin Biomech (Bristol, Avon) 2006;21:54-8.
137. Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 2006;100:2048-56.
138. Munteanu SE, Barton CJ. Lower limb biomechanics during running in individuals with achilles tendinopathy: a systematic review. J Foot Ankle Res 2011;4:15.
139. Kubo K, Ikebukuro T, Tsunoda N, Kanehisa H. Changes in oxygen consumption of human muscle and tendon following repeat muscle contractions. Eur J Appl Physiol 2008;104:859-66.
140. Hibbeler RC. Mechanics of materials. Upper Saddle River, N.J.: Prentice Hall; 2008.
141. Gere JM. Mechanics of materials. Mexico: Nelson; 2006.
142. Barber JR. Elasticity. Boston: Kluwer Academic Publishers; 1992.
143. Bergel DH. The static elastic properties of the arterial wall. J Physiol 1961;156:445-57.
144. Vailas aC, Tipton CM, Laughlin HL, Tcheng TK, Matthes RD. Physical activity and hypophysectomy on the aerobic capacity of ligaments and tendons. J Appl Physiol 1978;44:542-6.
145. Schwarz R, Colarusso L. Maintenance of differentiation in primary cultures of avian tendon cells. Exp Cell Res 1976;102:63-71.
146. Hunt TK, Conolly WB, Aronson SB, Goldstein P. Anaerobic metabolism and wound healing: an hypothesis for the initiation and cessation of collagen synthesis in wounds. Am J Surg 1978;135:328-32.
147. Birch HL, Rutter GA, Goodship AE. Oxidative energy metabolism in equine tendon cells. Res Vet Sci 1997;62:93-7.
148. Greve K, Domeij-Arverud E, Labruto F, Edman G, Bring D, Nilsson G, et al. Metabolic activity in early tendon repair can be enhanced by intermittent pneumatic compression. Scand J Med Sci Sports 2012:1-9.
149. Kalliokoski KK, Langberg H, Ryberg AK, Scheede-Bergdahl C, Doessing S, Kjaer A, et al. The effect of dynamic knee-extension exercise on patellar tendon and quadriceps femoris muscle glucose uptake in humans studied by positron emission tomography. J Appl Physiol 2005;99:1189-92.
150. Bojsen-Moller J, Kalliokoski KK, Seppanen M, Kjaer M, Magnusson SP. Low-intensity tensile loading increases intratendinous glucose uptake in the Achilles tendon. J Appl Physiol 2006;101:196-201.
151. Langberg H, Skovgaard D, Petersen LJ, Bulow J, Kjar M. Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol 1999;521:299.
152. Maeda E, Shelton JC, Bader DL, Lee Da. Differential regulation of gene expression in isolated tendon fascicles exposed to cyclic tensile strain in vitro. J Appl Physiol 2009;106:506-12.
153. Yang G, Crawford RC, Wang JH-C. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 2004;37:1543-50.
154. Kjar M, Langberg H, Miller BF, Boushel R, Crameri R, Koskinen S, et al. Metabolic activity and collagen turnover in human tendon in response to physical activity. J Musculoskelet Neuronal Interact 2005;5:41-52.
155. Arnoczky SP, Tian T, Lavagnino M, Gardner K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J Orthop Res 2004;22:328-33.
156. Koskinen SOa, Heinemeier KM, Olesen JL, Langberg H, Kjaer M. Physical exercise can influence local levels of matrix metalloproteinases and their inhibitors in tendon-related connective tissue. J Appl Physiol 2004;96:861-4.
157. Kruse NJ, Bornstein P. The metabolic requirements for transcellular movement and secretion of collagen. J Biol Chem 1975;250:4841-7.
158. Fu SC, Chan BP, Wang W, Pau HM, Chan KM, Rolf CG. Increased expression of matrix metalloproteinase 1 (MMP1) in 11 patients with patellar tendinosis. Acta Orthop Scand 2002;73:658-62.
159. Ireland D, Harrall R, Curry V, Holloway G, Hackney R, Hazleman B, et al. Multiple changes in gene expression in chronic human Achilles tendinopathy. Matrix Biol 2001;20:159-69.
160. Hannukainen J, Kalliokoski KK, Nuutila P, Fujimoto T, Kemppainen J, Viljanen T, et al. In vivo measurements of glucose uptake in human Achilles tendon during different exercise intensities. Int J Sports Med 2005;26:727-31.
161. Klein MB, Pham H, Yalamanchi N, Chang J. Flexor tendon wound healing in vitro: the effect of lactate on tendon cell proliferation and collagen production. J Hand Surg Am 2001;26:847-54.
162. Alfredson H, Bjur D, Thorsen K, Lorentzon R, Sandstrom P. High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. J Orthop Res 2002;20:934-8.
163. Lehoux S. Redox signalling in vascular responses to shear and stretch. Cardiovasc Res 2006;71:269-79.
164. Lind AR, Petrofsky JS. Amplitude of the surface electromyogram during fatiguing isometric contractions. Muscle Nerve 1979;2:257-64.
165. Moritani T, Muro M, Nagata a. Intramuscular and surface electromyogram changes during muscle fatigue. J Appl Physiol 1986;60:1179-85.
166. Larsson B, Mansson B, Karlberg C, Syvertsson P, Elert J, Gerdle B. Reproducibility of surface EMG variables and peak torque during three sets of ten dynamic contractions. J Electromyogr Kinesiol 1999;9:351-7.
167. Larsson B. Test–retest reliability of EMG and peak torque during repetitive maximum concentric knee extensions. J Electromyogr Kinesiol 2003;13:281-87.
168. Coorevits P, Danneels L, Cambier D, Ramon H, Druyts H, Karlsson JS, et al. Test-retest reliability of wavelet - and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions. J Electromyogr Kinesiol 2008;18:798-806.
169. Peach JP, Gunning J, McGill SM. Reliability of spectral EMG parameters of healthy back extensors during submaximum isometric fatiguing contractions and recovery. J Electromyogr Kinesiol 1998;8:403-10.
170. Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG. J Appl Physiol 2004;96:1486-95.
171. Baker SJ, Kelly NM, Eston RG. Pressure pain tolerance at different sites on the quadriceps femoris prior to and following eccentric exercise. Eur J Pain 1997;1:229-33.
172. Langberg H, Olesen JL, Gemmer C, Kjaer M. Substantial elevation of interleukin-6 concentration in peritendinous tissue, in contrast to muscle, following prolonged exercise in humans. J Physiol 2002;542:985-90.
173. Boushel R, Langberg H, Risum N, Kjar M. Regulation of blood flow by prostaglandins. Curr Vasc Pharmacol 2004;2:191-7.
174. Kidd BL, Urban La. Mechanisms of inflammatory pain. Br J Anaesth 2001;87:3-11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65080-
dc.description.abstract肌腱為承受力量之結締組織,其機械特性影響運動表現,且肌腱微循環和病變與修補相關。肌腱微循環同時受肌腱內血管之機械性質與代謝物質所調控,此兩參數在運動中對於肌腱血液循環的影響目前尚不明瞭。近年來,因近紅外光譜分析儀(near-infrared spectroscopy, NIRS)技術之進步,使運動狀態下的肌腱微循環能以此非侵入方式量測。但目前仍無研究利用相關技術探討經過運動使肌腱機械特性下降後,肌腱微循環的相對應變化。本研究預計徵召二十位健康的男性大專院校運動員與一般大學生,並依其運動訓練習慣分配為兩組別,分別接受四組四十下或四組八十下之等速離心運動。受試者需進行兩次,分別收取髕骨肌腱機械特性與微循環,並利用表面肌電圖以監測離心運動中是否產生疲勞。參數包括:肌腱剛性、總血紅素、氧飽和度、方均根肌電圖、中位頻率、壓痛閾值。
設計:橫斷式研究。實驗對象:健康男性大專運動員與一般大學生。方法:受試者分為兩組,兩次實驗間隔一週,分別進行機械特性或微循環量測。參數包含離心運動前、後之髕骨肌腱剛性、肌電圖參數與壓痛閾值,離心運動當中則觀察微循環參數之總血紅素與氧飽和度之平均值與斜率。統計分析:使用雙變數重複量測變異數分析。結果:離心運動後兩組肌腱剛性均顯著下降(-17%, p=0.024與-29%, p=0.037)。運動員族群之總血紅素平均值在力量上升階段、力量下降階段顯著高於非運動員族群;運動員之氧飽和度平均值在力量上升階段顯著高於非運動員;而非運動員之氧飽和度斜率在力量下降階段顯著高於運動員。肌電圖參數與壓痛閾值無顯著變化。結論:離心運動使肌腱機械特性下降的過程中,可使肌腱微循環參數改變,此現象在不同訓練程度的健康年輕男性中均可被觀察到。
關鍵字:離心收縮、肌腱機械特性、肌腱微循環、近紅外光譜分析儀、紅光雷射
zh_TW
dc.description.abstractTendon is an important mechanical transduction structure. Mechanical properties of the tendon affect force transferring to the bone, while the tendon microcirculation involves tendon lesion and repair. Tendon microcirculation is mediated by the mechanical property of vessels and the circulating metabolites. The influence of these two categories of factors on tendon microcirculation during exercise is still unknown. Near-infrared spectroscopy is a noninvasive method for measuring tendon microcirculation in vivo, but currently no study applied this technique to evaluate the acute change of microcirculation during and after an eccentric exercise protocol.
Design: Cross-sectional study. Participants: 20 healthy male recreational college-level athletes and college students. Method: The subjects will be randomized assign into 2 groups (4sets of 40 repetitions or 4sets of 80 repetitions of eccentric exercise). Two measurements (mechanical properties or microcirculation) will be performed for each subject in a one-week interval. Variables including patellar tendon stiffness, total hemoglobin (THb), oxygen saturation (SO2), RMS EMG, median frequency and pain pressure threshold were measured at baseline, during the exercise, and 3 different time point after the eccentric exercise. Statistics: Two-way repeated measurement ANOVA will be used for data analysis. Significant level is set at 0.05. Results: Tendon stiffness decreased significantly after eccentric exercise in two groups (-17%, p=0.024 and -29%, p=0.037). In athlete group, mean values of THb during force ascending and descending phases were significantly higher than non-athlete group. In addition, mean values of SO2 during force ascending were also significantly higher. In non-athlete group, slope of SO2 during force descending were significantly higher than athlete group. No significant differences were observed in all EMG variables and pain pressure threshold. Conclusions: Eccentric contraction can decrease tendon stiffness. During the exercise, changes of tendon microcirculation in both regular trained or untrained college-level participants were significant.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:21:43Z (GMT). No. of bitstreams: 1
ntu-101-R99428004-1.pdf: 6123163 bytes, checksum: e415b135a50ed00ade32eb42c4543356 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents論文口試委員審定書 2
誌謝 3
中文摘要 4
英文摘要 5
圖目錄 9
表目錄 10
第一章 前言 11
第一節 研究背景與動機 11
第二節 研究目的 13
第二章 文獻回顧 14
第一節 肌腱解剖與生理 14
第二節 阿基里斯腱與髕骨肌腱機械特性 18
第三節 阿基里斯腱與髕骨肌腱微循環 23
第四節 近紅外線光譜分析儀 33
第五節 離心運動之急性效應 36
第六節 總結 39
第三章 研究方法 40
第一節 理論架構 40
第二節 假說 41
一、虛無假設 41
二、檢定假設 41
第三節 參數與操作型定義 43
一、自變項 43
二、依變項 44
第四節 研究對象 48
第五節 實驗方法 49
一、 實驗設計 49
二、 實驗流程 49
三、 參數量測方式 56
四、 資料處理 64
五、 統計分析 68
第四章 結果 69
第五章 討論 71
第六章 結論 82
第七章 參考文獻 83
附錄一:本研究結果圖表 96
附錄二:臨床試驗受試者說明與同意書 104
附錄三:倫理委員會臨床試驗許可書 111
dc.language.isozh-TW
dc.subject離心收縮zh_TW
dc.subject肌腱機械特性zh_TW
dc.subject肌腱微循環zh_TW
dc.subject近紅外光譜分析儀zh_TW
dc.subject紅光雷射zh_TW
dc.subjectred laser lightsen
dc.subjecttendon mechanical propertyen
dc.subjecttendon microcirculationen
dc.subjectEccentric contractionen
dc.subjectnear-infrared spectroscopyen
dc.title髕骨肌腱機械特性改變中肌腱微循環之效應zh_TW
dc.titlePatellar Tendon Microcirculation Changes during Alteration of Mechanical Propertiesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳英黛(Ying-Tai Wu),陳文翔(Wen-Shiang Chen)
dc.subject.keyword離心收縮,肌腱機械特性,肌腱微循環,近紅外光譜分析儀,紅光雷射,zh_TW
dc.subject.keywordEccentric contraction,tendon mechanical property,tendon microcirculation,near-infrared spectroscopy,red laser lights,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
5.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved