Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65074
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周傳心(Chan-Shin Chou)
dc.contributor.authorJia-Yuan Linen
dc.contributor.author林家源zh_TW
dc.date.accessioned2021-06-16T23:21:02Z-
dc.date.available2015-08-03
dc.date.copyright2012-08-03
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation[1]池田拓郎 著, 陳世春 譯著, “基本壓電材料學,” 復漢社出版, 1997/12
[2]Albert Killen, David Tarrant, David Jensen, “High acceleration, high performance solid state accelerometer development,” IEEE AES Systems Magazine, pp.20-25, 1994
[3]Sungkyu Lee, “Photolithography and Selective Etching of an Array of Surface Mount Device 32.768 kHz Quartz Tuning Fork Resonators: Definition of Side-Wall Electrodes and Interconnections Using Stencil Mask,” The Japan Society of Applied Physics, 40, Pt. 1, No.9A, pp.5480-5484, 2001
[4]R.M. Langdon, “Resonator Sensors-A Review,” J. Phys. E: Sci. Instrum, 18, pp.103-115, 1985
[5]H.E. Karrer , J.A. Leach, “A quartz resonator pressure transducer,” IEEE Transactions on Industrial Electronics and Control Instrumentation, 1969
[6]E.Karrer, “Low range quartz resonator pressure transducer,” ISA Trans. 16 No 2 60-8, 1977
[7]J.M. Paros, “Digital quartz transducers for absolute pressure measurement,” ISA 21st Int. Instrum. Symp. Philadelphia USA, 1975
[8]N.R. Serra, “Technical report on the quartz resonator digital accelerometer,” 1968
[9]E.P. EerNisse, G.J. Banik, “Vibrating quartz force sensor for magnetic suspensions systems,” ISA 29th Int. Instrumentation Symp. 2-6, Albuquerque USA ,pp 219-26 ,1983
[10]R.G. Kirman, “A vibrating quartz force sensor,” Transducer Tempcon Conf. 14-16, 1982
[11]William C. Albert., “Force Sensing Using Quartz Crystal Flexure Resonators,” 38th Annual Frequency Control Symposium, pp.233-239, 1984
[12]W.J. Kass, G. S. Snow, “Double-ended tuning fork quartz accelerometer,” 40th Annual Frequency Control Symposium, pp.230-236, 1986
[13]Greger Thornell, Hakan Rapp, Klas Hjort, “X-cut miniature tuning forks realized by ion track lithography,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 47(1), pp.8-15, January 2000
[14]Hideaki Itoh, Tomoyuki Yuasa, “An Analysis of Frequency of A Quartz Crystal Tuning Fork by Sezawa's Theory,” IEEE International Frequency Control Symposium, pp.921-925, 1998
[15]Hideaki Itoh, Takashi Matsumoto, “An analysis of frequency of a quartz crystal tuning fork by Sezawa's approximation-the effect of clamped position of its base,” Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, pp.494-500, 1999
[16]Hideaki Itoh, Yook-Kong Yong, “An Analysis of Frequency of A Quartz Crystal Tuning Fork By Sezawa's Approximation and Winkler’s Foundation of The Supporting Elinvar Alloy Wire,” IEEE/EIA International Frequency Control Symposium and Exhibition, pp.420-424, 2000
[17]Sungkyu Lee, Yangho Moon, Jeongho Yoon, Hyungsik Chung, “Analytical and finite element method design of quartz-tuning fork resonators and experimental test of samples manufactured using photolithography 1-significant design parameters affecting static capacitance C0,” Elsevier, Vacuum 75, pp.57-69, 2004
[18]Sungkyu Lee, Yangho Moon, Jaekyu Lee, Jeongho Yoon, Ji-Hoon Moon, Jong-hee Kim, Seung-Hyun Yoo, Hyungsik Chung, “Analytical and finite element method design of quartz-tuning fork resonators and experimental test of samples manufactured using photolithography 2: comprehensive analysis of resonance frequencies using Sezawa's approximations,” Elsevier, Vacuum 78, pp.91-105, 2005
[19]A Castellanos-Gomez, N Agrait, G Rubio-Bollinger, “Dynamics of Quartz Tuning Fork Force Sensors Used in Scanning Probe Microscopy,” IOP Publishing Ltd, Nanotechnology 20, pp.1-8, 2009
[20]W.J. Kass, G. S. Snow, “Double-ended tuning fork quartz accelerometer,” 40th Annual Frequency Control Symposium, pp.230-236, 1986.
[21]Q.Wang, S.T. Quek, “Flexural vibration analysis of sandwich beam coupled with piezoelectric actuator,” Smart mater. Struct. 9, pp.103-109, 1999
[22]Jan Soderkvist, “Using FEA To Treat Piezoelectric Low-frequency Resonators,” 1997 IEEE International Frequency Control Symposium, pp.634-642, 1997
[23]E.D. Reedy, JR., W.J. Kass, “Finite-element analysis of a quartz digital accelerometer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 37(5), pp.464-474, 1990
[24]S. S. Law, Z, R, Lu, “Time domain responses of a prestressed beam and prestress identification,” Journal of Sound and Vibration 288, pp.1011-1025, 2005
[25]Leonard Meirovitch, Principles and Techniques of Vibrations, Prentice Hall, 1997
[26]陳明澤“單晶石英加速規之自然頻率理論分析” 國立臺灣大學工學院應用力學研究所碩士論文,2009
[27]黃柏勳“單晶石英加速規自然頻率之有限元素法分析” 國立臺灣大學工學院應用力學研究所碩士論文,2009
[28]張育瑋“軸向力作用下雙端固定石英振盪器的自然頻率分析” 國立臺灣大學工學院應用力學研究所碩士論文,2009
[29]章蓓靜“雙端固定壓電石英音叉樑振盪器之自然頻率分析” 國立臺灣大學工學院應用力學研究所碩士論文,2011
[30]Charles Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2005
[31]www.search.com/reference/Rhombohedral
[32]TXC Corporation, http://www.txc.com.tw/tw/d_support/01.html
[33]http://www.4timing.com/techquartz.htm
[34]IEEE Standard on Piezoelectricity, Institute of Electrical and Electronics Engineers, Inc, 1987
[35]http://ins22web.seu.edu.cn/chgq/chap1-11/cgq601-1.htm,壓電效應及材料
[36]壓電材料與器件物理-張沛霖等,山東科學技術出版社
[37]述本正美, 廖詩文, “高頻通訊用晶體振盪器的技術及發展,” 電子與材料雜誌, 第13期, pp.126-131, 2002
[38]http://zh.wikipedia.org/wiki/File:Crystal_modes_multilingual.svg
[39]Jinhua Zhengke Electronics Co., Ltd., http://www.cnzkc.com/en/index.aspx
[40]TXC Corporation, http://www.txccrystal.com/index.html
[41]IEEE Standard on Piezoelectricity, New York, 176 (1978) 42.
[42]Takuro Ikeda, Fundamentals of Piezoelectricity, Oxford University Press,2005
[43]D.A. Berlincourt, D. R. Curran, F. Patat, “Piezoelectric and piezomagnetic materials and their function as transducers,” in Physical Acoustic, W. P. Mason Ed., 1A, Academic Press, New York, 1964
[44]Jiashi Yang, Analysis of Piezoelectric Devices, World Scientific, 2006
[45]R.E. Newnham, Properties of materials , Oxford University Press, pp.91-92, 2005
[46]R. Bechmann, “Elastic and Piezoelectric Constants of Alpha- Quartz,” Physical Review, Vol. 110, pp.1060-1061, 1958
[47]周卓明, “壓電力學,” 全華科技圖書股份有限公司出版, 2003/11
[48]H.F. Tiersten, Linear Piezoelectric Plate Vibration, 1969
[49]Raymond D. Mindlin, “Forced Thickness-Shear and Flexural Vibrations of Piezoelectric Crystal Plates,” Journal of Applied Physics, Vol.23, No.1, pp.83-88, Jan. 1952
[50]謝發華 博士,中山科學研究院
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65074-
dc.description.abstract本文主要分析(ZYw)+2°雙端固定音叉式石英振盪器之共振頻率,分析預力作用與壓電效應對於共振頻率的影響,以獲得更接近真實情況與應用的共振頻率變化。雙端固定音叉式石英振盪器可由兩端的質量塊以及中間音叉雙樑所組成,其振動模態可分為同相 (in-phase mode) 振盪和異相(anti-phase mode)振盪兩種,而雙端固定音叉式石英振盪器理想的振盪模態為異相(anti-phase mode)振盪,故本文針對異相振盪行為進行分析,在做石英振盪器解析分析之前,先討論不考慮質量塊效應下石英單樑的自由振動行為,使用尤拉樑(Euler beam)理論來模擬單樑的變形,利用漢米頓原理(Hamilton’s Principle)建立單樑模型的統御方程式和邊界條件,並利用Mathematica數學軟體輔助複雜的數學計算,以數值解求解頻率相關的特徵方程式,並且計算出各模態的共振頻率。
兩端質量塊依據音叉樑異相振盪對質量塊所造成的力矩來建立翹曲形變的模型;耦合部分,假設其結構為彈性體,分別討論各自結構自由振動行為,由上述漢米頓原理所推導出運動統御方程式及邊界條件,根據單樑與質量塊接合處的幾何邊界條件,將其進行耦合,以獲得整體石英振盪器各模態之自然頻率,並討論預力與自然頻率變化關係。
zh_TW
dc.description.abstractThe thesis mainly studied about a Z-cut2° double-ended tuning fork quartz resonator, analyzing the impact of the pre-stressed force and piezoelectric effect on a natural frequency, for the sake of approaching the real situation and application of resonance frequency change. The double-ended tuning fork type quartz resonator is composed of a pair of slender Euler beams and two proof masses located at the two ends of the resonator. There are two vibration modes of the tuning fork for the same order mode shape that is in-phase mode and anti-phase mode. The thesis is mainly focus on the analysis of the anti-phase mode, Before performing the analysis of the whole quartz resonator. First, it doesn't consider the free vibration behavior of the mass effect on quartz single beam. Simulate single beam deformation by Euler beam theory, using the Hamilton's principle building the governing equation and the boundary condition of the single beam model, and to use the “Mathematica” software to solve the frequency-related characteristic equation numerically, and to calculate the natural frequencies of mode sharps.
For two ends of the proof masses building the warping model which is according to the moment that caused by the anti-phase mode from the tuning fork to the proof masses; Assuming the coupling structure as an elastic body, discussing the free vibration to each structure, By Hamilton's principle getting the governing equation and the boundary condition. For coupling, to base on the single beam and proof mass of geometric boundary conditions at interface, obtaining the natural frequencies of each mode for the double ended tuning fork type quartz oscillator, and to acquire the relationship between the pre-stressed force and the natural frequencies variation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:21:02Z (GMT). No. of bitstreams: 1
ntu-101-R99543013-1.pdf: 2544602 bytes, checksum: 813dbf56aed91adf29c34785c2a47481 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書..........................................................................................................i
誌謝.................................................................................................................................ii
中文摘要........................................................................................................................iii
英文摘要........................................................................................................................iv
目錄............................................................................................................................... vi
圖目錄............................................................................................................................ix
表目錄.......................................................................................................................... xii
符號說明..................................................................................................................... xiii
第一章 導論.............................................................................................................1
1.1 前言.........................................................................................................1
1.2 振動式石英振盪器原理.........................................................................2
1.3 文獻回顧.................................................................................................3
1.3.1 音叉模型............................................................................................5
1.3.2 壓電效應..........................................................................................10
1.3.3 石英切角..........................................................................................11
1.3.4 軸向預力之影響..............................................................................12
1.3.5 各項假設對於石英振盪器之影響..................................................13
1.4 研究目的與章節摘要...........................................................................13
第二章 石英晶體特性與壓電效應.......................................................................16
2.1 晶格類型...............................................................................................16
2.2 晶體結構...............................................................................................17
2.3 切角命名與模態...................................................................................19
2.4 壓電效應...............................................................................................22
2.5 壓電材料參數.......................................................................................26
2.5.1 機電耦合係數kd...............................................................................26
2.5.2 壓電係數dip......................................................................................27
2.5.3 機械品質因素Qm.............................................................................27
2.5.4 頻率係數N.......................................................................................28
2.5.5 介電係數 .....................................................................................28
2.6 石英參數..............................................................................................29
第三章 石英樑側向振動分析..............................................................................32
3.1 矩形截面之尤拉樑..............................................................................32
3.1.1 壓電彈性體.....................................................................................32
3.1.2 座標系統.........................................................................................33
3.1.3 軸向預力作用之位移與變形假設.................................................34
3.2 漢米頓原理(Hamilton’s principle) .....................................................38
3.2.1 尤拉樑之動能.................................................................................38
3.2.2 尤拉樑之電焓.................................................................................40
3.2.3 石英單樑統御方程式.....................................................................46
3.2.4 共振頻率分析.................................................................................48
3.2.5 振動模態.........................................................................................56
3.2.6 DETF音叉樑接合處自由體圖之受力狀況...................................57
第四章 雙端固定音叉式石英振盪器之異相振盪自然頻率..............................59
4.1 質量塊分析..........................................................................................59
4.1.1 預力作用下質量塊之變形假設.....................................................60
4.1.2 質量塊之動能.................................................................................63
4.1.3 質量塊之電焓.................................................................................63
4.2 質量塊之統御方程式..........................................................................68
4.2.1 DETF質量塊接合處之受力狀況...................................................73
4.3 異相振盪DETF石英振盪器振動分析..............................................73
4.3.1 石英振盪器邊界耦合.....................................................................74
4.3.2 DETF石英振盪器預力大小之設計...............................................87
4.4 DETF石英振盪器尺寸對頻率之影響...............................................88
第五章 結論..........................................................................................................96
參考文獻......................................................................................................................97
附錄A.........................................................................................................................102
附錄B.........................................................................................................................104
附錄C.........................................................................................................................105
附錄D.........................................................................................................................106
附錄E.........................................................................................................................107
dc.language.isozh-TW
dc.title軸向預力作用於雙端固定壓電石英振盪器之自然頻率分析zh_TW
dc.titleNatural Frequency Analysis of Axially-Loaded on the Double-Ended Tuning Fork Piezoelectric-Quartz Resonatoren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor張家歐(Chia-Ou Chang)
dc.contributor.oralexamcommittee謝發華,張簡文添
dc.subject.keyword雙端固定,音叉式石英振盪器,預力,壓電效應,共振頻率,漢米頓原理,zh_TW
dc.subject.keywordDouble-Ended,Tuning fork type quartz resonator,Pre-stressed force,Piezoelectric effect,natural frequency,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved