請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65058
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛景中(Jing-Jong Shyue) | |
dc.contributor.author | Guo-Zhi Yen | en |
dc.contributor.author | 嚴國誌 | zh_TW |
dc.date.accessioned | 2021-06-16T23:19:35Z | - |
dc.date.available | 2015-08-09 | |
dc.date.copyright | 2012-08-09 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-01 | |
dc.identifier.citation | 1. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184.
2. Xia, Y.N., et al., Formation of patterned microstructures of conducting polymers by soft lithography, and applications in microelectronic device fabrication. Advanced Materials, 1999. 11(12): p. 1038-1041. 3. Gooding, J.J., et al., Self-assembled monolayers into the 21(st) century: Recent advances and applications. Electroanalysis, 2003. 15(2): p. 81-96. 4. Groth, T., et al., Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 2004. 25(14): p. 2721-2730. 5. Lee, C.J., et al., Photopatterning of gold and copper surfaces by using self-assembled monolayers. Current Applied Physics, 2007. 7(5): p. 522-527. 6. Malhotra, B.D., et al., Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors & Bioelectronics, 2009. 24(9): p. 2810-2817. 7. Shyue, J.J., et al., Site-Selective Deposition of Gold on Photo-Patterned Self-Assembled Monolayers. Chemistry of Materials, 2008. 20(21): p. 6606-6610. 8. Shyue, J.J., et al., Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Physical Chemistry Chemical Physics, 2009. 11(29): p. 6199-6204. 9. Shyue, J.J., et al., Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups. Journal of Colloid and Interface Science, 2009. 340(1): p. 126-130. 10. Kuo, C.H., et al., Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers. Physical Chemistry Chemical Physics, 2011. 13(33): p. 15122-6. 11. Tsao, M.W., et al., Studies of molecular orientation and order in self-assembled semifluorinated n-alkanethiols: Single and dual component mixtures. Langmuir, 1997. 13(16): p. 4317-4322. 12. Gupta, P., K. Vermani, and S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today, 2002. 7(10): p. 569-579. 13. Kataoka, K., et al., Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition, 2003. 42(38): p. 4640-4643. 14. Meng, F.H., et al., pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. Journal of Controlled Release, 2010. 142(1): p. 40-46. 15. He, B., et al., Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. Journal of Controlled Release, 2011. 152(1): p. 49-56. 16. Lee, D.S., et al., Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer, 2011. 52(15): p. 3304-3310. 17. Sato, K., et al., pH- and sugar-sensitive layer-by-layer films and microcapsules for drug delivery. Adv Drug Deliv Rev, 2011. 63(9): p. 809-21. 18. Zhao, Y.B., et al., Dual temperature/pH-sensitive drug delivery of poly(N-isopropylacrylamide-co-acrylic acid) nanogels conjugated with doxorubicin for potential application in tumor hyperthermia therapy. Colloids and Surfaces B-Biointerfaces, 2011. 84(2): p. 447-453. 19. Lemasters, J.J., et al., The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta, 1998. 1366(1-2): p. 177-96. 20. Ulbrich, K. and V. Subr, Polymeric anticancer drugs with pH-controlled activation. Advanced Drug Delivery Reviews, 2004. 56(7): p. 1023-1050. 21. Pockels, A., Prof. Van der Waals on the Continuity of the Liquid and Gaseous States. Nature, 1891. 43: p. 437-439. 22. Pockels, A., On the Relative Contamination of the Water-Surface by Equal Quantities of Different Substances. Nature, 1892. 46: p. 418-419. 23. Langmuir, I., THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. J. Am. Chem. Soc., 1916. 38(11): p. 2221-2295. 24. Langmuir, I., The mechanism of the surface phenomena of flotation. Trans. Faraday Soc., 1920. 15: p. 62-74. 25. Blodgett, K.B., MONOMOLECULAR FILMS OF FATTY ACIDS ON GLASS. J. Am. Chem. Soc., 1934. 56(2): p. 495-495. 26. Bigelow, W.C., D.L. Pickett, and W.A. Zisman, Oleophobic Monolayers .1. Films Adsorbed from Solution in Non-Polar Liquids. Journal of Colloid Science, 1946. 1(6): p. 513-538. 27. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996. 96(4): p. 1533-1554. 28. Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev, 2005. 105(4): p. 1103-69. 29. Schwartz, D.K., Mechanisms and kinetics of self-assembled monolayer formation. Annual Review of Physical Chemistry, 2001. 52: p. 107-137. 30. Roberts, G., Langmuir - Blodgett films1990: New York [etc.] : Plenum. 31. Nam, J.M., C.S. Thaxton, and C.A. Mirkin, Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003. 301(5641): p. 1884-6. 32. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc., 1980. 102(1): p. 92-98. 33. P. Silberzan, L.L., D. Ausserre, J. J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers. Langmuir, 1991. 7(8): p. 1647-1651. 34. Jwa-Min Nam, S.I.S., and Chad A. Mirkin*, Bio-Bar-Code-Based DNA Detection with PCR-like Sensitivity. J. Am. Chem. Soc., 2004. 126(19): p. 5932-5933. 35. Colin D. Bain, E.B.T., Yu Tai Tao, Joseph Evall, George M. Whitesides, Ralph G. Nuzzo, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc., 1989. 111(1): p. 321-335. 36. David L. Angst, G.W.S., Moisture absorption characteristics of organosiloxane self-assembled monolayers. Langmuir, 1991. 7(10): p. 2236-2242. 37. R. R. Rye, G.C.N., and M. T. Dugger, Mechanistic Aspects of Alkylchlorosilane Coupling Reactions. Langmuir, 1997. 13(11): p. 2965-2972. 38. J. D. Le Grange, J.L.M., C. R. Kurkjian, Effects of surface hydration on the deposition of silane monolayers on silica. Langmuir, 1993. 9(7): p. 1749-1753. 39. Klemens Mathauer, C.W.F., Naphthalene chromophore tethered in the constrained environment of a self-assembled monolayer. Langmuir, 1993. 9(11): p. 3002-3008. 40. Stephen R. Carino, H.T., Royale S. Underhill, Jennifer Logan, Gayanga Weerasekera,† Jeffrey Culp, Mark Davidson,‡ and Randolph S. Duran*, Real-Time Grazing Incidence X-ray Diffraction Studies of Polymerizing n-Octadecyltrimethoxysilane Langmuir Monolayers at the Air/Water Interface. J. Am. Chem. Soc., 2001. 123(4): p. 767-768. 41. Carlo Carraro, O.W.Y., Myung M. Sung, and Roya Maboudian, Observation of Three Growth Mechanisms in Self-Assembled Monolayers. J. Phys. Chem., 1998. 102(23): p. 4441-4445. 42. T. Vallant, H.B., U. Mayer, and H. Hoffmann, Formation of Self-Assembled Octadecylsiloxane Monolayers on Mica and Silicon Surfaces Studied by Atomic Force Microscopy and Infrared Spectroscopy. J. Phys. Chem., 1998. 102(37): p. 7190-7197. 43. Dr. Emmanuel. Delamarche, D.B.M., Dr. Hans A. Biebuyck, Dr. Christoph Gerber, Golden Interfaces: The Surface of Self- Assembled Monolayers. Advanced Materials, 1996. 8(9): p. 719-729. 44. Silver Colloids. http://www.silver-colloids.com/Tutorials/Intro/pcs13.html. 45. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chem. Rev., 1947. 41(3): p. 441-501. 46. Larryisgood., M.a.c.t.S.b.M.O.w.b., Diagram of zeta potential and slipping plane, D.o.z.p.a.s. plane, Editor 2012. p. Diagram showing the ionic concentration and potential difference as a function of distance from the charged surface of a particle suspended in a dispersion medium. 47. Dr. Colin D. Bain1, P.G.M.W., Modeling Organic Surfaces with Self-Assembled Monolayers. Angewandte Chemie-International Edition, 1989. 28(4): p. 506-512. 48. Nikin Patel, M.C.D., Mark Hartshorne, Richard J. Heaton, Clive J. Roberts, Saul J. B. Tendler, and Philip M. Williams, Immobilization of Protein Molecules onto Homogeneous and Mixed Carboxylate-Terminated Self-Assembled Monolayers. Langmuir, 1997. 13(24): p. 6485-6490. 49. Linda A. Chrisey, G.U.L.a.C.E.O.F., Covalent Attachment of Synthetic DNA to Self-Assembled Monolayer Films. Nucl. Acids Res. , 1996. 24(15): p. 3031-3039. 50. G. Binnig, C.F.Q.a.C.G., Atomic Force Microscope. Phys. Rev. Lett. , 1986. 56: p. 930-933. 51. C. Kaparissides, S.A., K. Kotti and S. Chaitidou,, Recent advances in novel drug delivery systems. J. Nanotechnol, 2006. Online 2. 52. Priya Bawa, V.P., Yahya E Choonara and Lisa C du Toit, Stimuli-responsive polymers and their applications in drug delivery. Biomedical Materials, 2009. 4(2). 53. Schmaljohann, D., Thermo- and pH-responsive polymers in drugdelivery. Advanced Drug Delivery Reviews, 2006. 58(15): p. 1655-1670. 54. Sangeeta Tanna, M. Joan Taylor, Tarsem S. Sahota, Kirsty Sawicka, Glucose-responsiveUVpolymeriseddextran–concanavalinAacrylicderivatisedmixtures for closed-loopinsulindelivery. Biomaterials, 2006. 27(8): p. 1586-1597. 55. Valerie Ravaine, C.A., Bogdan Catargi, Chemicallycontrolledclosed-loopinsulindelivery. Journal of Controlled Release, 2008. 132(1): p. 2-11. 56. Harish Iyer*, A.K., Manish Verma, Oral insulin – a review of current status. Diabetes, Obesity and Metabolism, 2009. 12(3): p. 179-185. 57. Simon Heller , P.K., Peter Kurtzhals, Insulin's85thanniversary—Anenduringmedicalmiracle. Diabetes Research and Clinical Practice, 2007. 78(2): p. 149-158. 58. Cullis, T.M.A.a.P.R., Drug Delivery Systems: Entering the Mainstream. Science, 2004. 103: p. 1818-1822. 59. M.D. Judah Folkman, L., MC, USNR David M. Long, The use of silicone rubber as a carrier for prolonged drug therapy. Journal of Surgical Research, 1964. 4(3). 60. Hunsuck, D.E.C.a.E.E., Tissue reaction to the biodegradable polylacticacid suture. Oral Surgery, Oral Medicine, Oral Pathology, 1971. 31(1): p. 134-139. 61. LIM, O.W.D., Hydrophilic Gels for Biological Use. Nature, 1960. 185: p. 117-118. 62. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2002. 54(1): p. 3-12. 63. Mehrdad Hamidi, A.A., Pedram Rafieia, Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1638-1649. 64. Partha Ghosh, G.H., Mrinmoy De, Chae Kyu Kim, Vincent M. Rotello, Gold nanoparticles in delivery applications Advanced Drug Delivery Reviews, 2008. 60(11): p. 1307-1315. 65. Chae-kyu Kim, P.G.a.V.M.R., Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009. 1: p. 61-67. 66. Wen Jiang, B.Y.S.K., James T. Rutka & Warren C. W. Chan, Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 2008. 3: p. 145-150. 67. Steven D. Perrault, C.W., Travis Jennings, Hans C. Fischer and Warren C. W. Chan, Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Lett., 2009. 9(5): p. 1909-1905. 68. 李世元, 林.林., 奈米量測技術-原子力顯微鏡在生物分子上之應用. 化學. 67: p. 83-91. 69. Victor Shahin, Y.L., Claudia Schafer, Dessy Nikova and Hans Oberleithner, Glucocorticoids remodel nuclear envelope structure and permeability. Journal of Cell Science, 2005. 118: p. 2881-2889. 70. Kosmulski, M., Chemical Properties of Material Surfaces2001. 71. Zhijian Wua, H.X., Taehoon Kim, Myung-Suk Chun, Kangtaek Lee, Surfaceproperties of submicrometersilicaspheresmodified with aminopropyltriethoxysilane and phenyltriethoxysilane. Journal of Colloid and Interface Science, 2006. 304(1): p. 119-124. 72. Toshihisa Osaki, R.Z., Thomas Kratzmuller, Rudiger Schweiss, and Carsten Werner, Polyanion Protection of Silane Bonds to Silicon Oxide Revealed by Electrokinetic Measurements. Langmuir, 2004. 20: p. 524-527. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65058 | - |
dc.description.abstract | 近幾年來,由於金的高生物相容性,使其在生物應用領域的研究相當的廣泛。
在金材料製程與表面修飾的不斷進步下,使金系統在材料科學、化學、生物學以及藥物學領域皆有許多創新與突破性的應用。許多研究皆顯示經過表面修飾的金基材提供一個更有效率的方式來共價鍵結生物分子 (如:質體DNA或蛋白質等),有助於生物感測器以及生物傳輸方面的發展。然而,共價鍵結增加分子脫附的難度,限制了其應用性。 本研究中,我們將不同比例之羧酸官能基與胺基硫醇分子,在鍍金的原子力顯微鏡上修飾二元自組裝單層膜,得到一系列等電位點 (100% -COOH IEP = 3.5 ~100% -NH2 IEP = 6.3)。利用原子力顯微鏡的接觸模式,我們可以在水溶液中測量力-距離曲線,分析二元自組裝薄膜修飾的探針與自組裝薄膜修飾的矽平板表面間在不同pH值之下的交互作用力。由於表面電位會隨著pH做改變,當兩者帶同性電時,會有排斥作用力;反之,兩者帶異性電則會有吸引作用力,我們藉由控制溶液的pH值來量測其力曲線,得到其作用力的變化。 透過分析力曲線的交互作用力,我們可以知道不同等電位點的二元自組裝修飾金探針在不同pH值中的吸引與排斥現象。所以,我們可以透過控制修飾不同化學組成之自組裝單層膜來改變表面的交互作用力,提供了一個有潛力的方式來做為分子輸送系統的應用。 | zh_TW |
dc.description.abstract | The use of gold substrate in Biochemistry has increasingly been the object of study for its high biologic compatibility in recent years. The continuing improvements in materials processing and surface modification of gold have led to many new and fascinating applications in material science, chemistry, biology, and medicine. A majority of studies have suggested that modified gold substrate provide an efficient way to covalently bond biologic molecules such as plasmid DNA and proteins in the fields of biosensors and biologic transportation. However, the application of covalently-bonded combination is limited by its difficulty in desorption of molecules.
In this work, the gold-coated probes are modified by self-assembled monolayers (SAMs) of mixed carboxylic acid and amine functional groups in a series of ratio, and the iso-electronic points (IEPs) between 3.5~6.3 are obtained. Using the contact mode atomic force microscopy in liquid, the electrostatic interactions between modified probes v.s. APTES or modified probes v.s. SiO2 are measured at different pH values by using the force curve. Because the interacting surfaces can have the same or opposite sign of potential, repulsive or attractive interaction can be observed. Furthermore, since the surface potential is a function of pH, the observed interactions between a given set of surfaces changes with the aqueous environment. Through analyzing the electrostatic interactions, we examined the repulsive and attractive behaviors on SAMs-modified gold substrates of different IEP in aqueous environment. By controlling the interactions using SAMs of different chemical composition, this result may provide a promising mean for drug delivery systems (DDS). | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:19:35Z (GMT). No. of bitstreams: 1 ntu-101-R98527043-1.pdf: 3632784 bytes, checksum: 3720b560541bda71075baccde650cbff (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 第二章 文獻回顧 3 2.1自組裝單層膜 (SAMs)發展簡介 3 2.1.1 自組裝單層膜之起源 3 2.1.2 自組裝單層膜之結構 5 2.1.3 自組裝單層膜之特點 7 2.2 自組裝單層膜系統 8 2.2.1金基材上之自組裝薄膜 8 2.2.2 矽基材上之自組裝薄膜 11 2.3 材料表面性質調控與應用 16 2.3.1 表面電性調控 16 2.3.2 潤濕性調控 19 2.2.3 共價附著性調控 21 2.4 藥物傳輸 22 2.4.1 藥物傳輸的目的 22 2.4.2 藥物傳輸系統 24 2.4.3 奈米金粒子應用於藥物傳輸 28 2.5 研究動機與目的 30 第三章 實驗 31 3.1 實驗材料 31 3.2實驗儀器簡介 32 3.3 實驗步驟 35 3.4 實驗原理 37 第四章 實驗結果與討論 39 4.1 實驗條件 39 4.2 結果討論 45 第五章 結論 53 參考文獻 54 | |
dc.language.iso | zh-TW | |
dc.title | 二元自組裝單層膜修飾之金探針與材料在水溶液中之交互作用力 | zh_TW |
dc.title | Forces between Binary Self-Assembled Monolayer Modified AFM Probes and Materials in Aqueous Environments | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 虞邦英(Bang-Ying Yu),康佳正(Chia-Cheng Kang) | |
dc.subject.keyword | 自組裝單層膜,表面修飾,表面電位,等電位點,力曲線, | zh_TW |
dc.subject.keyword | Self Assembled Monolayer,Surface Potential,Isoelectric Point,Force Curve, | en |
dc.relation.page | 59 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-01 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。