請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65055完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宗霖(Jay Shieh) | |
| dc.contributor.author | Po-Cheng Huang | en |
| dc.contributor.author | 黃柏承 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:19:26Z | - |
| dc.date.available | 2014-08-03 | |
| dc.date.copyright | 2012-08-03 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | 1. Chen, Z. and C. Lu, Humidity sensors: A review of materials and mechanisms. Sensor Letters, 2005. 3(4): p. 274-295.
2. Kulwicki, B.M., Humidity Sensors. Journal of the American Ceramic Society, 1991. 74(4): p. 697-708. 3. Traversa, E., Ceramic Sensors for Humidity Detection - the State-of-the-Art and Future-Developments. Sensors and Actuators B-Chemical, 1995. 23(2-3): p. 135-156. 4. Varghese, O.K. and C.A. Grimes, Metal oxide nanoarchitectures for environmental sensing. Journal of Nanoscience and Nanotechnology, 2003. 3(4): p. 277-293. 5. Yamazoe, N. and Y. Shimizu, Humidity Sensors - Principles and Applications. Sensors and Actuators, 1986. 10(3-4): p. 379-398. 6. Mai, L.H., et al., Some investigation results of the instability of humidity sensors based on alumina and porous silicon materials. Sensors and Actuators B-Chemical, 2000. 66(1-3): p. 63-65. 7. Nahar, R.K., Study of the performance degradation of thin film aluminum oxide sensor at high humidity. Sensors and Actuators B-Chemical, 2000. 63(1-2): p. 49-54. 8. Nahar, R.K., Physical understanding of moisture induced degradation of nanoporous aluminum oxide thin films. Journal of Vacuum Science & Technology B, 2002. 20(1): p. 382-385. 9. Morimoto, T. and M. Nagao, The relation between the amounts of chemisorbed and physisorbed water on zinc oxide. Bulletin of the Chemical Society of Japan, 1970. 43(12): p. 3746-3750. 10. Egashira, M., et al., Temperature Programmed Desorption Study of Water Adsorbed on Metal-Oxides .2. Tin Oxide Surfaces. Journal of Physical Chemistry, 1981. 85(26): p. 4125-4130. 11. Lin, C.H. and S.D. Senturia, The Aging of Hydrated Aluminum-Oxide Thin-Films. Sensors and Actuators, 1983. 4(4): p. 497-506. 12. Palibroda, E. and P. Marginean, Considerations on the Adsorbed Water Concentration of Sulfuric Porous Aluminum-Oxide. Thin Solid Films, 1994. 240(1-2): p. 73-75. 13. Joubert, J., et al., Simulating temperature programmed desorption of water on hydrated gamma-alumina from first-principles calculations. Journal of Physical Chemistry B, 2006. 110(14): p. 7392-7395. 14. Masuda, H., F. Hasegwa, and S. Ono, Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. Journal of the Electrochemical Society, 1997. 144(5): p. L127-L130. 15. Masuda, H., K. Yada, and A. Osaka, Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Japanese Journal of Applied Physics Part 2-Letters, 1998. 37(11A): p. L1340-L1342. 16. Ono, S., et al., Controlling factor of self-ordering of anodic porous alumina. Journal of the Electrochemical Society, 2004. 151(8): p. B473-B478. 17. Sulka, G.D. and W.J. Stepniowski, Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures. Electrochimica Acta, 2009. 54(14): p. 3683-3691. 18. Harrington, R.A. and H.R. Nelson, An electron diffraction study of anodic films. Transactions of the American Institute of Mining and Metallurgical Engineers, 1940. 137: p. 62-75. 19. Edwards, J.D. and T. Keller, The structure of anodic oxide coatings. Transactions of the American Institute of Mining and Metallurgical Engineers, 1944. 156: p. 288-299. 20. Keller, F., M.S. Hunter, and D.L. Robinson, Structural Features of Oxide Coatings on Aluminium. Journal of the Electrochemical Society, 1953. 100(9): p. 411-419. 21. Hunter, M.S. and P. Fowle, Factors Affecting the Formation of Anodic Oxide Coatings. Journal of the Electrochemical Society, 1954. 101(10): p. 514-519. 22. Hoar, T.P. and J. Yahalom, The Initiation of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions. J. Electrochem. Soc., 1963. 110(6): p. 614-621. 23. Leach, J.S.L. and P. Neufeld, Mechanical effects during the growth of anodic films. corrosion Science, 1969. 9(4): p. 225-244. 24. Hoar, T.P. and N.F. Mott, A Mechanism for the Formation of Porous Anodic Oxide Films on Aluminium. Journal of Physics and Chemistry of Solids, 1959. 9(2): p. 97-99. 25. Renshaw, T.A., A Study of Pore Structures on Anodized Aluminum. Journal of the Electrochemical Society, 1961. 108(2): p. 185-191. 26. Zalivalov, F.P., M.N. Tyukina, and N.D. Tomashov, Effect of Electrolysis Conditions on the Formation and Growth of Anodic Oxide Films on Aluminum. Zhurnal Fizicheskoi Khimii, 1961. 35(4): p. 879-886. 27. Franklin, R.W. and D.J. Stirland, Studies on the Structure of Anodic Oxide Films on Aluminum .2. Journal of the Electrochemical Society, 1963. 110(4): p. 262-267. 28. Paolini, G., et al., An Investigation of Porous Anodic Oxide Films on Aluminum by Comparative Adsorption Gravimetric and Electronoptical Measurements. Journal of the Electrochemical Society, 1965. 112(1): p. 32-&. 29. Osulliva.Jp and G.C. Wood, Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1970. 317(1531): p. 511-&. 30. Masuda, H. and K. Fukuda, Ordered Metal Nanohole Arrays Made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 1995. 268(5216): p. 1466-1468. 31. Jeong, S.H., et al., Packing density control of aligned carbon nanotubes. Chemistry of Materials, 2002. 14(10): p. 4003-+. 32. Sander, M.S., et al., Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Advanced Materials, 2002. 14(9): p. 665-667. 33. Inoue, S., et al., New roots to formation of nanostructures on glass surface through anodic oxidation of sputtered aluminum. Science and Technology of Advanced Materials, 2003. 4(4). 34. Chen, P.L., et al., Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD. Diamond and Related Materials, 2004. 13(11-12): p. 1949-1953. 35. Li, A.P., et al., Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. Journal of Applied Physics, 1998. 84(11): p. 6023-6026. 36. Jessensky, O., F. Muller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina. Applied Physics Letters, 1998. 72(10): p. 1173-1175. 37. Nielsch, K., et al., Self-ordering regimes of porous alumina: The 10% porosity rule. Nano Letters, 2002. 2(7): p. 677-680. 38. Thompson, G.E., Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 1997. 297(1-2): p. 192-201. 39. Li, F.Y., L. Zhang, and R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chemistry of Materials, 1998. 10(9): p. 2470-2480. 40. Morimoto, T., M. Nagao, and F. Tokuda, Relation between the amounts of chemisorbed and physisorbed water on metal oxides. J. Phys. Chem., 1969. 73(1): p. 243-248. 41. Ansbacher, F. and A.C. Jason, Effects of Water Vapour on the Electrical Properties of Anodized Aluminium. Nature, 1953. 171(4343): p. 177-178. 42. Jason, A.C. and J.L. Wood, Some Electrical Effects of the Adsorption of Water Vapour by Anodized Aluminium. Proceedings of the Physical Society of London Section B, 1955. 68(12): p. 1105-1116. 43. Sadaoka, Y., Y. Sakai, and S. Matsumoto, Electrical-Properties of Anodized Aluminum in a Humid Atmosphere. Journal of Materials Science, 1986. 21(4): p. 1269-1274. 44. Khanna, V.K. and R.K. Nahar, Effect of Moisture on the Dielectric-Properties of Porous Alumina Films. Sensors and Actuators, 1984. 5(3): p. 187-198. 45. Varghese, O.K., et al., Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance. Journal of Materials Research, 2002. 17(5): p. 1162-1171. 46. Fripiat, J.J., et al., Thermodynamic Properties of Adsorbed Water Molecules and Electrical Conduction in Montmorillonites and Silicas. Journal of Physical Chemistry, 1965. 69(7): p. 2185-&. 47. Anderson, J.H. and G.A. Parks, Electrical Conductivity of Silica Gel in Presence of Adsorbed Water. Journal of Physical Chemistry, 1968. 72(10): p. 3662-&. 48. Nahar, R.K., V.K. Khanna, and W.S. Khokle, On the Origin of the Humidity-Sensitive Electrical-Properties of Porous Aluminum-Oxide. Journal of Physics D-Applied Physics, 1984. 17(10): p. 2087-2095. 49. Khanna, V.K. and R.K. Nahar, Surface Conduction Mechanisms and the Electrical-Properties of Al2o3 Humidity Sensor. Applied Surface Science, 1987. 28(3): p. 247-264. 50. Khanna, V.K. and R.K. Nahar, Carrier-Transfer Mechanisms and Al2o3 Sensors for Low and High Humidities. Journal of Physics D-Applied Physics, 1986. 19(7): p. L141-L145. 51. Fleming, W.J., A Physical Understanding of Solid State Humidity Sensors. SAE Technical Paper, 1981. 810432. 52. Nahar, R.K. and V.K. Khanna, Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor. Sensors and Actuators B-Chemical, 1998. 46(1): p. 35-41. 53. Orazem, M.E. and B. Tribollet, Electrochemical Impedance Spectroscopy2008: John Wiley and Sons. 54. Sluyters, J.H. and J.J.C. Oomen, On the Impedance of Galvanic Cells .2. Experimental Verification. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1960. 79(8): p. 1101-1110. 55. Bauerle, J.E., Study of Solid Electrolyte Polarization by a Complex Admittance Method. Journal of Physics and Chemistry of Solids, 1969. 30(12): p. 2657-&. 56. Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, ed. E. Barsoukov2005: John Wiley and Sons. 57. Mulder, W.H., et al., Tafel Current at Fractal Electrodes - Connection with Admittance Spectra. Journal of Electroanalytical Chemistry, 1990. 285(1-2): p. 103-115. 58. Brug, G.J., et al., The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element. Journal of Electroanalytical Chemistry, 1984. 176(1-2): p. 275-295. 59. Stoynov, Z., Impedance Modeling and Data-Processing - Structural and Parametrical Estimation. Electrochimica Acta, 1990. 35(10): p. 1493-1499. 60. Pajkossy, T., Electrochemistry at Fractal Surfaces. Journal of Electroanalytical Chemistry, 1991. 300(1-2): p. 1-11. 61. Paasch, G., K. Micka, and P. Gersdorf, Theory of the Electrochemical Impedance of Macrohomogeneous Porous-Electrodes. Electrochimica Acta, 1993. 38(18): p. 2653-2662. 62. Pajkossy, T., Impedance of Rough Capacitive Electrodes. Journal of Electroanalytical Chemistry, 1994. 364(1-2): p. 111-125. 63. Pajkossy, T., T. Wandlowski, and D.M. Kolb, Impedance aspects of anion adsorption on gold single crystal electrodes. Journal of Electroanalytical Chemistry, 1996. 414(2): p. 209-220. 64. Haertling, G.H., Ferroelectric ceramics: History and technology. Journal of the American Ceramic Society, 1999. 82(4): p. 797-818. 65. Moulson, A.J. and J.M. Herbert, Electroceramics2003: John Wiley and Sons. 66. Gutierrez, F.F., et al., Proton mobility calculations in the presence of negative capacitances. Europhysics Letters, 1998. 44(2): p. 211-215. 67. ten Kortenaar, M.V., et al., Anodic oxidation of formaldehyde on gold studied by electrochemical impedance spectroscopy: An equivalent circuit approach. Journal of the Electrochemical Society, 1999. 146(6): p. 2146-2155. 68. Varghese, O.K. and L.K. Malhotra, Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy. Journal of Applied Physics, 2000. 87(10): p. 7457-7465. 69. Wang, C.C., et al., Low-frequency negative capacitance in La0.8Sr0.2MnO3/Nb-doped SrTiO3 heterojunction. Applied Physics Letters, 2008. 92(5). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65055 | - |
| dc.description.abstract | 陽極處理氧化鋁其表面具有奈米級的孔洞大小,可以用作優良的溼度感測材料。在過往的文獻中,對於孔洞氧化鋁表面之吸附水層受溫度之影響已經被大幅度的報導,但是卻很少有人探討過孔洞氧化鋁吸附水層受到機械式的振動,對於其性質的影響。在本實驗中,我們將研究孔洞氧化鋁溼度感測的性質受機械振動之影響為何。
利用製備出一個由孔洞氧化鋁與壓電陶瓷的複合結構,來驅使壓電陶瓷產生振動,對孔洞氧化鋁施加機械式的壓電振動,觀察是否有驅散表面吸附水層的效果。本實驗首先量測在無壓電振動下,從低溼度到高溼度的阻抗頻譜與電容值,證實了孔洞氧化鋁具有良好感測環境溼度變化的能力。接著在四個代表性的溼度下 (RH90 %、RH80 %、RH70 %、RH60 %) 施加壓電振動,並再次量測阻抗頻譜與電容值,結果發現在高溼度下,由於表面吸附相當大量的水層,壓電振動無法去影響這麼多的水層,反而是干擾了在低頻量測時的電荷傳遞,當壓電振幅越大,電荷傳遞受影響的程度也越大。在低溼度下,由於此時表面吸附的水層相對較少,壓電振動可以有效的驅散部分的吸附水層,使得在高溼度受振動情況下,得到與低溼度時類似的性質,且驅散水層的效果會隨著壓電振幅的增加而更加明顯。 孔洞氧化鋁溼度感測器在低頻量測時具有較佳的溼度感測敏感度,當施加壓電振動,對於低溼度的感測能力明顯提升,但相對的也會破壞感測的線性行為。 當長時間施加壓電振動後,試片本身會產生疲勞現象,導致整體的阻抗值變大,這是實際使用此複合結構時,必須考慮到的問題。 | zh_TW |
| dc.description.abstract | Nanoporous anodic aluminum oxide (AAO) has attracted great attention due to its potential application in humidity sensing. The effect of raising temperature on the adsorbed water layer at AAO surface was widely studied. In this study, the effect and mechanism of piezoelectric vibration on the adsorbed water layer at the AAO surface, which were not reported before, has been investigated by impedance spectroscopy (IS) and capacitance measurement. This is achieved by building a composite structure consisting of an AAO layer and a piezoelectric ceramic layer.
At high relative humidity (RH) values, due to the large amount of water covered on AAO surface, the piezoelectric vibration only disturbs the conduction in low measuring frequencies. In contrast, at low RH values, the piezoelectric vibration mainly repels part of the adsorbed water layer at the AAO surface, producing an impedance curve similar to that of a lower RH under no piezoelectric vibration. AAO humidity sensor exhibits a good sensing sensitivity at low measuring frequencies. When the piezoelectric vibration is applied, the sensitivity at low RH values sharply increases, but the linearity is lost. Under a long period of piezoelectric vibration, the AAO surface experiences a fatigue phenomenon, an issue that needs to be considered during its application. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:19:26Z (GMT). No. of bitstreams: 1 ntu-101-R99527047-1.pdf: 3712627 bytes, checksum: 5e796b09f69f249ad3045015777162ed (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第一章 緒論………………………………………………………………………………………………………………1
1.1 研究動機與目的………………………………………………………………………………………1 1.2 章節簡介……………………………………………………………………………………………………2 第二章 文獻回顧………………………………………………………………………………………………………3 2.1 孔洞陽極處理氧化鋁………………………………………………………………………………3 2.2 水分子吸附機制……………………………………………………………………………………15 2.3 溼度感測…………………………………………………………………………………………………17 2.4 阻抗頻譜…………………………………………………………………………………………………21 2.4.1 阻抗的基本介紹………………………………………………………………………………21 2.4.2 阻抗頻譜的量測方法………………………………………………………………………23 2.4.3 基本電路元件與行為………………………………………………………………………24 2.5 壓電材料與共振頻率……………………………………………………………………………32 第三章 實驗方法與步驟…………………………………………………………………………………………36 3.1 複合結構的製備……………………………………………………………………………………36 3.1.1 陽極處理氧化鋁的製備…………………………………………………………………36 3.1.2 指叉式電極的製備…………………………………………………………………………38 3.1.3 黏著壓電陶瓷平板…………………………………………………………………………39 3.2 SEM表面分析…………………………………………………………………………………………42 3.3 複合結構的共振頻率測量……………………………………………………………………42 3.4 阻抗頻譜的量測……………………………………………………………………………………43 3.5 介電性質分析…………………………………………………………………………………………44 3.6 疲勞試驗…………………………………………………………………………………………45 第四章 實驗結果與討論…………………………………………………………………………………………46 4.1 SEM微結構觀察……………………………………………………………………………………46 4.2 複合結構的共振頻率量測…………………………………………………………………48 4.3 無壓電振動下的阻抗表現…………………………………………………………………49 4.4 壓電振動影響下的阻抗表現……………………………………………………………53 4.4.1 RH90 %下振動與無振動之阻抗表現比較………………………………53 4.4.2 RH80 %下振動與無振動之阻抗表現比較………………………………57 4.4.3 RH70 %下振動與無振動之阻抗表現比較………………………………61 4.4.4 RH60 %下振動與無振動之阻抗表現比較………………………………64 4.5 介電性質分析………………………………………………………………………………………68 4.5.1 無壓電振動下的介電表現……………………………………………………………69 4.5.2 壓電振動影響下的介電表現…………………………………………………………70 4.5.2.1 RH90 %下施加壓電振動對於電容之影響…………………………70 4.5.2.2 RH80 %下施加壓電振動對於電容之影響…………………………71 4.5.2.3 RH70 %下施加壓電振動對於電容之影響…………………………72 4.5.2.4 RH60 %下施加壓電振動對於電容之影響…………………………73 4.6 溼度感測敏感度……………………………………………………………………………………74 4.6.1 無壓電振動下的溼度感測敏感度…………………………………………………74 4.6.2 壓電振動影響下的溼度感測敏感度……………………………………………75 4.7 等效電路與阻抗頻譜的擬合…………………………………………………………………80 4.7.1 無振動狀態下的阻抗頻譜擬合……………………………………………………80 4.7.2 壓電振動影響下的阻抗頻譜擬合…………………………………………………84 4.8 不同量測電壓對柯爾圖曲線之影響…………………………………………………92 4.9 壓電振動造成之疲勞現象……………………………………………………………………95 第五章 結論………………………………………………………………………………………………………………99 第六章 參考文獻………………………………………………………………………………………………………102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 陽極處理氧化鋁 | zh_TW |
| dc.subject | 阻抗頻譜 | zh_TW |
| dc.subject | 介電性質 | zh_TW |
| dc.subject | 等效電路 | zh_TW |
| dc.subject | 壓電振動 | zh_TW |
| dc.subject | 溼度感測 | zh_TW |
| dc.subject | Equivalent circuit. | en |
| dc.subject | Humidity sensing | en |
| dc.subject | Piezoelectric vibration | en |
| dc.subject | Impedance spectroscopy | en |
| dc.subject | Dielectric properties | en |
| dc.subject | Anodic aluminum oxide (AAO) | en |
| dc.title | 壓電振動對於奈米孔洞氧化鋁在溼度感測表現上之影響 | zh_TW |
| dc.title | Effect of Piezoelectric Vibration on the Humidity Sensing Behavior of Nanoporous Alumina | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林招松(Chao-Sung Lin),陳敏璋(Miin-Jang Chen),郭錦龍(Chin-Lung Kuo) | |
| dc.subject.keyword | 陽極處理氧化鋁,溼度感測,壓電振動,阻抗頻譜,介電性質,等效電路, | zh_TW |
| dc.subject.keyword | Anodic aluminum oxide (AAO),Humidity sensing,Piezoelectric vibration,Impedance spectroscopy,Dielectric properties,Equivalent circuit., | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
