請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Hui Lin) | |
| dc.contributor.author | Chih-Fan Hsu | en |
| dc.contributor.author | 許知梵 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:18:26Z | - |
| dc.date.available | 2014-08-01 | |
| dc.date.copyright | 2012-08-28 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | 參考文獻
1. Boyle, A.J., I.K. McNiece, and J.M. Hare, Mesenchymal stem cell therapy for cardiac repair. Methods Mol Biol, 2010. 660: p. 65-84. 2. Sussman, M.A. and C.E. Murry, Bones of contention: marrow-derived cells in myocardial regeneration. J Mol Cell Cardiol, 2008. 44(6): p. 950-3. 3. Schnabel, L.V., et al., Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res, 2009. 27(10): p. 1392-8. 4. Sun, L., et al., Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 2009. 27(6): p. 1421-32. 5. Shah, K., Mesenchymal stem cells engineered for cancer therapy. Adv Drug Deliv Rev, 2011. 6. Mueller-Klieser, W., Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am J Physiol, 1997. 273(4 Pt 1): p. C1109-23. 7. Boo, L., et al., Expansion and preservation of multipotentiality of rabbit bone-marrow derived mesenchymal stem cells in dextran-based microcarrier spin culture. J Mater Sci Mater Med, 2011. 22(5): p. 1343-56. 8. Yang, Y., F.M. Rossi, and E.E. Putnins, Ex vivo expansion of rat bone marrow mesenchymal stromal cells on microcarrier beads in spin culture. Biomaterials, 2007. 28(20): p. 3110-20. 9. Knight, E., et al., Alvetex(R): polystyrene scaffold technology for routine three dimensional cell culture. Methods Mol Biol, 2011. 695: p. 323-40. 10. Ratajczak, M.Z., et al., Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. J Autoimmun, 2008. 30(3): p. 151-62. 11. Surani, M.A., K. Hayashi, and P. Hajkova, Genetic and epigenetic regulators of pluripotency. Cell, 2007. 128(4): p. 747-62. 12. Patestas, M.A. and L.P. Gartner, A textbook of neuroanatomy2006: Blackwell Pub. 13. Hafez, B. and E.S.E. Hafez, Reproduction in farm animals2000: Lippincott Williams & Wilkins. 14. Cardozo, L. and D. Staskin, Textbook of female urology and urogynaecology2001: Isis Medical Media. 15. Savagner, P., Rise and fall of epithelial phenotype: concepts of epithelial-mesenchymal transition2005: Landes Bioscience/Eurekah.com. 16. Paul, L.C. and T.B. Issekutz, Adhesion molecules in health and disease1997: Marcel Dekker. 17. Nagy, A., Manipulating the mouse embryo: a laboratory manual2003: Cold Spring Harbor Laboratory Press. 18. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7. 19. Friedens.Aj, et al., Heterotopic Transplants of Bone Marrow - Analysis of Precursor Cells for Osteogenic and Hematopoietic Tissues. Transplantation, 1968. 6(2): p. 230-&. 20. Friedenstein, A.J., Precursor Cells of Mechanocytes. International Review of Cytology-a Survey of Cell Biology, 1976. 47: p. 327-359. 21. Friedenstein, A.J., et al., Origin of Bone-Marrow Stromal Mechanocytes in Radiochimeras and Heterotopic Transplants. Experimental Hematology, 1978. 6(5): p. 440-444. 22. Nardi, N.B., L.D.S. Meirelles, and P.C. Chagastelles, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 2006. 119(11): p. 2204-2213. 23. Cavallo, C., et al., Comparison of alternative mesenchymal stem cell sources for cell banking and musculoskeletal advanced therapies. Journal of Cellular Biochemistry, 2011. 112(5): p. 1418-30. 24. Verfaillie, C.M., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-49. 25. Anversa, P., et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001. 410(6829): p. 701-705. 26. Bentzon, J.F., et al., Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun, 2005. 330(3): p. 633-640. 27. Bieback, K., et al., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006. 24(5): p. 1294-1301. 28. Glowacki, J. and S.M. Mueller, Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Journal of Cellular Biochemistry, 2001. 82(4): p. 583-590. 29. S., G. and A. N., Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. Frontiers in Bioscience, 2007. 12: p. 4946-56. 30. Prindull, G., et al., Cfu-F Circulating in Cord Blood. Blut, 1987. 54(6): p. 351-359. 31. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. British Journal of Haematology, 2000. 109(1): p. 235-242. 32. Hwang, S.M., et al., Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells, 2006. 24(3): p. 679-685. 33. Kaplan, J.M., M.E. Youd, and T.A. Lodie, Immunomodulatory Activity of Mesenchymal Stem Cells. Curr Stem Cell Res Ther, 2010. 34. E, B.-A., B.-A. S, and M. A., Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmunity Reviews, 2011. 10(7): p. 410–415. 35. Park, K. and H. Park, Smart Hydrogels, in: J.C. Salamone (Ed.), Concise Polymeric Materials Encyclopedia. CRC Press, Boca Raton, 1999: p. 1476–1478. 36. Hoffman, A.S., Intelligent Polymers, in: K. Park (Ed.), Controlled Drug Delivery: Challenge and Strategies. American Chemical Society, Washington, DC, 1997: p. 485–497. 37. Bae, Y.H., Stimuli-Sensitive Drug Delivery, in: K. Park (Ed.), Controlled Drug Delivery: Challenge and Strategies. American Chemical Society, Washington, DC, 1997: p. 147–160. 38. Osada, Y. and M. Hasebe, Electrically activate mechanochemical devices using polyelectrolyte gels. Chem. Lett, 1985. 9: p. 1285–1288. 39. Suzuki, M., Amphoteric polyvinyl alcohol hydrogel and electrohydrodynamic control method for artificial muscles in: D. DeRossi (Ed.), Polymer gels. Plenum Press, New York, 1991: p. 221–236. 40. Osada, Y., H. Okuzaki, and H. Hori, A polymer gel with electrically driven motility. Nature, 1992. 355: p. 242–244. 41. Chen, J.P., Y.M. Sun, and D.H. Chu, Immobilization of alpha-amylase to a composite temperature-sensitive membrane for starch hydrolysis. Biotechnol Prog, 1998. 14(3): p. 473-8. 42. Shiroya, T., et al., Enzyme immobilization on thermosensitive hydrogel microspheres. Colloids Surf. B, 1995. 4: p. 267–274. 43. Feil, H., Y.H. Bae, and S.W. Kim, Molecular separation by thermoresponsive hydrogel membranes. J. Memb. Sci., 1991. 64: p. 283–294. 44. Park, C. and I. Orozco-Avila, Concentrating cellulases from fermented broth using a temperature-sensitive hydrogel. Biotechnol. Prog., 1992. 8: p. 521–526. 45. Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci., 1992. 17: p. 163-249. 46. Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 2001. 53(3): p. 321-39. 47. Firestone, B.A. and R.A. Siegel, Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J. Appl. Polym. Sci., 1991. 43: p. 901–914. 48. Chenitea, A., et al., Rheological characterisation of thermogelling chitosan/glycerol phosphate solutions. Carbohydrate Polymers, 2001. 46: p. 39-47. 49. Shahidi, F. and J. Synowiecki, Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem., 1991. 39(8): p. 1527–1532. 50. Housecroft, C.E. and A.G. Sharpe, Inorganic Chemistry, 3rd edn, 2008, Pearson Education. 51. Boumaza, I., et al., Autologous bone marrow-derived rat mesenchymal stem cells promote PDX-1 and insulin expression in the islets, alter T cell cytokine pattern and preserve regulatory T cells in the periphery and induce sustained normoglycemia. J Autoimmun, 2009. 32(1): p. 33-42. 52. 楊瑞森, 李家維, and 陳家全, 生物電子顯微鏡學1991: 國科會精儀中心. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65046 | - |
| dc.description.abstract | 間質幹細胞為多功能性幹細胞(Multipotent stem cell),具有多能分化及免疫調節的特性,常用來作為組織工程或探討免疫途徑、機制的主角。由於間質幹細胞在研究的需求量愈來愈大,與一般平面培養所能增生的細胞數差異甚大,故科學家期望能發展出大量增生的系統來作細胞培養。
本研究利用pH值敏感型水膠幾丁聚醣球作為間質幹細胞在生物反應器內增生的細胞載體,間質幹細胞取自於四周大成鼠的四肢。幾丁聚醣具有良好的生物相容性,因其對pH值敏感的特性,已被廣泛地應用於藥物釋放及組織工程上。然而,幾丁聚醣為細胞不易貼附的材料,故利用明膠在幾丁聚醣球上覆膜,加強細胞貼附性。除了細胞載體外,本研究將細胞置入過程功能封閉式生物反應器系統(Functionally-closed process bioreactor system)作培養。此生物反應器以灌流(perfused system)的方式使細胞生長於液體流動的環境中,帶走細胞新陳代謝的廢物並帶進充足的養分,而不間斷地供應細胞培養液更減少更換培養液所造成汙染的機會。 本研究結果顯示,利用明膠覆膜-幾丁聚醣球作為間質幹細胞增生的細胞載體,其直徑大小約為 1.5 mm。由FITC接枝明膠,並以共軛焦顯微鏡觀察及BCA蛋白質的測定得知明膠均勻地覆膜於幾丁聚醣球。以WST-1作增生分析,培養於生物反應器中的細胞有顯著的增長,其速率略大於在 96 well中培養,以Live/Dead staining及SEM觀察亦可得到相同的結論。另外,以SEM觀察可發現細胞在幾丁聚醣球上的生長型態與在平面培養下的形態(morphology)不同,在平面下培養,細胞呈紡錘狀,大小約為 100 μm,而在幾丁聚醣球上培養,細胞亦會有觸角的展開,但細胞體較為圓滾,大小約為 20 μm。培養至第三天後,將細胞收集下來以流式細胞儀作細胞標記的分析,並針對特定的細胞標記以共軛焦顯微鏡觀察。與在平面上培養的細胞標記相比較,除了CD45不表現外,CD29,CD44,CD54,CD90,CD106均有表現,顯示間質幹細胞並未在此增生的系統中分化,並維持間質幹細胞的型態(phenotype),證明以這套系統增生大量未分化的間質幹細胞的可行性。 | zh_TW |
| dc.description.abstract | Mesenchymal stem cell is a multipotent stem cell. It has the ability to differentiate to diverse tissues and immunomodulatory properties. It has been widely investigated in tissue engineering and immune pathways and mechanism recently. Duo to its growing demand, it is expected to develop a system to proliferate mesenchymal stem cell.
In this study, chitosan was used as cell carrier of mesenchymal stem cell proliferating in bioreactor. Mesenchymal stem cell was isolated from four limbs of four-week rat. Chitosan has good biocompatibility and it is been widely investigated for drug delivery and tissue engineering due to its pH-sensitive characteristics. However, chitosan is a hydrophobic material and that makes it difficult for cells to attach on. Therefore, gelatin-coated chitosan beads was developed in this study in order to enhance cell adhesion. Furthermore, functionally-closed process bioreactor system was set up for the cell proliferation. It contains a disposable tube, a pump, and fresh medium. This is a perfused system which provides a circulating environment for cells to proliferate. Adequate nutrients and oxygen can be taken into the system by pump and the wastes that cell produced can also be taken out. The system continuously provides fresh medium without manual operation and that can reduce the possibility of contamination. Gelatin-coated chitosan beads was investigated in this study. Its diameter was about 1.5 mm. The amount of gelatin coated on chitosan beads was evaluated by confocal and BCA assay and the results showed that gelatin was uniformly coated on chitosan beads. The results of proliferation rate showed that mesenchymal stem cell cultured in bioreactor had significant growth, and was slightly faster than cultured in 96 well. The results from Live/Dead staining and SEM observation were also corresponded to the proliferation rate. From the SEM observation, it was discovered that the cell morphology was different between cultured in bioreactor and in dish. Mesenchymal stem cell cultured in dish is 100 μm spindle-like cell, while it is 20 μm round cell with filopodia in bioreactor. After 3-day culture in bioreactor, cells were evaluated by flow cytometry to determine whether its phenotype changed or not, and were also observed by confocal microscopy. Cell was negative in CD45 and positive in CD29, CD44, CD54, CD90, CD106 both cultured in dish and in bioreactor. It represented that the phenotype was remain after mesenchymal stem cell was cultured in this system. The results showed that it is a possible way to proliferate mesenchymal stem cell in functionally-closed process bioreactor system with gelatin-coated chitosan beads as cell carrier. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:18:26Z (GMT). No. of bitstreams: 1 ntu-101-R99548017-1.pdf: 2694539 bytes, checksum: e6810019cb617ac10f5c28703bb0fe62 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄
中文摘要 ……………………………………………………………………………. I Abstract ………………………………………………………………………………II 目錄 …………………………………………………………………………………IV 圖目錄 ……………………………………………………………………………... VI 表目錄 ……………………………………………………………………………. VIII 第一章 前言 1.1 間質幹細胞 (mesenchymal stem cell) ….……………………………………… 1 1.2 細胞載體(Cell carrier) ….………………………………………………………. 1 1.3 生物反應器(bioreactor) ….……………………………………………………... 3 1.4 研究目的 ….……………………………………………………………………. 4 第二章 理論基礎 2.1 幹細胞 ….………………………………………………………………………. 5 2.1.1 幹細胞的發展與分化 ….………………………………………………… 5 2.1.2 間質幹細胞 ….…………………………………………………………… 6 2.2 細胞載體(cell carrier) ….……………………………………………………….. 8 2.2.1 水膠 ….…………………………………………………………………… 8 2.2.2 溫度敏感型水膠(temperature-sensitive hydrogel) ….……………………. 8 2.2.3 pH值敏感型水膠(pH-sensitive hydrogel) ….…………………………….. 9 2.2.4 材料選擇 ….…………………………………………………………….. 10 2.3過程功能封閉式生物反應器系統 ….………………………………………… 11 第三章 材料製備與流程 3.1 實驗儀器 ….…………………………………………………………………... 12 3.2 實驗藥品 ….…………………………………………………………………... 13 3.3 實驗架構 ….…………………………………………………………………... 14 3.4 實驗方法 ….…………………………………………………………………... 15 3.4.1 間質幹細胞….…………………………………………………...………. 15 3.4.1.1 間質幹細胞的分離與培養 ………………………………………… 15 3.4.2 明膠覆膜-幾丁聚醣球(gelatin-coated chitosan bead)的製備 ...……….. 16 3.4.3 細胞接種結合生物反應器 ….……………………….…………………. 17 3.5材料分析 ….…………………………………………………………………… 18 3.5.1 FITC接枝明膠 …………………………………....................................... 18 3.5.1.1 FITC接枝明膠溶液(FITC-conjugated gelatin)的製備 …………… 19 3.5.2 BCA蛋白質定量…………………………………………………………. 20 3.6 細胞分析 ……………………………………………………………………… 21 3.6.1 細胞標記(Cell marker)測定 ……………………………………………. 21 3.6.2 細胞酸處理之分析 ……………………………………………………... 22 3.6.2.1 WST-1細胞活性測試 ……………………………………………... 22 3.7生物反應器培養後之細胞分析 ………………………………………………. 23 3.7.1 細胞增生之分析 ………………………………………………………... 23 3.7.2 細胞存活染色(Live/dead staining)分析 ………………………………... 24 3.7.2.1 樣品製備 ………………………………………………………….. 24 3.7.3 掃描式電子顯微鏡(scanning electron microscope,SEM)分析 ………. 25 3.7.3.1 藥品製備 ………………………………………………………….. 25 3.7.3.2 樣本製備 ………………………………………………………….. 26 3.7.4細胞標記測定 …………………………………………………………… 27 第四章 結果與討論 4.1 材料分析 ……………………………………………………………………… 28 4.1.1 FITC接枝明膠分析 ……………………………………………………... 28 4.1.2 BCA蛋白質定量 ………………………………………………………... 29 4.2 細胞分析 ……………………………………………………………………… 30 4.2.1 間質幹細胞之培養與細胞標記之分析 ………………………………... 30 4.3生物反應器培養後之細胞分析 ………………………………………………. 31 4.3.1 細胞增生之分析 ………………………………………………………... 31 4.3.2 細胞存活染色分析 ……………………………………………………... 32 4.3.3 掃描式電子顯微鏡之分析 ……………………………………………... 33 4.3.4 細胞酸處理之分析 ……………………………………………………... 34 4.3.4 細胞標記之分析 ………………………………………………………... 35 第五章 結論 ……………………………………………………………………..... 36 參考文獻 …………………………………………………………………………... 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | 細胞載體 | zh_TW |
| dc.subject | pH質敏感型水膠 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 生物反應器 | zh_TW |
| dc.subject | bioreactor | en |
| dc.subject | mesenchymal stem cell | en |
| dc.subject | cell carrier | en |
| dc.subject | pH-sensitive hydrogel | en |
| dc.subject | chitosan | en |
| dc.title | 以明膠覆膜-幾丁聚醣球作為未分化的間質幹細胞在生物反應器內增生的細胞載體 | zh_TW |
| dc.title | Proliferation of undifferentiated mesenchymal stem cell with gelatin-coated chitosan bead as cell carrier in functionally-closed process bioreactor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林泰元(Thai-Yen Ling) | |
| dc.contributor.oralexamcommittee | 郭士民(Shyh-Ming Kuo) | |
| dc.subject.keyword | 間質幹細胞,細胞載體,pH質敏感型水膠,幾丁聚醣,生物反應器, | zh_TW |
| dc.subject.keyword | mesenchymal stem cell,cell carrier,pH-sensitive hydrogel,chitosan,bioreactor, | en |
| dc.relation.page | 40 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
