Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫雅麗
dc.contributor.authorSheng-Jhe Lanen
dc.contributor.author籃聖喆zh_TW
dc.date.accessioned2021-06-16T23:18:10Z-
dc.date.available2015-08-09
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-08-01
dc.identifier.citation[1] M. Arlitt and T. Jin. “Workload Characterization of the 1998 World Cup Web Site.” Technical Report HPL-1999-35R1, HP Labs, 1999.
[2] “RUBiS Online Auction System,” http://rubis.ow2.org/.
[3] “Hichannel.” http://hichannel.hinet.net/.
[4] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. “An Analytical Model for Multi-tier Internet Services and Its Applications,” in Proc. of the ACM SIGMETRICS (to appear), Banff, Canada, June 2005.
[5] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood. “Agile dynamic provisioning of multi-tier Internet applications.” ACM Transactions on Autonomous Adaptive Systems, 3(1), 2008.
[6] A. Kamra, V. Misra, and E. M. Nahum. “Yaksha: a self-tuning controller for managing the performance of 3-tiered Web sites,” in Proc. Intl. Workshop on Quality of Service, 2004.
[7] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server performance modeling using an M/G/1/K*PS queue,” presented at 10th International Conference on Telecommunications (ICT 2003.), 2003.
[8] Jiang, G. Pierre, and C.H. Chi. “Autonomous resource provisioning for multi-service web applications,” in Proceedings of the 19th international conference on World Wide Web, pages 471–480. ACM, 2010.
[9] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic ReSource Scaling for Cloud Systems,” in Proc. IEEE International Conference on Network and Services Management (CNSM), 2010.
[10] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource scaling for multi-tenant cloud systems,” in Proc. of SOCC, 2011.
[11] Kenney, J. F. and Keeping, E. S. “Linear Regression and Correlation,” Ch. 15 in Mathematics of Statistics, Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, pp. 252-285, 1962.
[12] Nilabja Roy, Abhishek Dubey, Aniruddha Gokhale, Efficient “Autoscaling in the Cloud Using Predictive Models for Workload Forecasting,' IEEE 4th International Conference on Cloud Computing 2011, 500-507.
[13] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “Generating adaptation policies for multi-tier applications in consolidated server environments,” in Proc. IEEE Int. Conf. on Autonomic Computing, 2008, pp. 23–32.
[14] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32, no. 3, pp. 241–254, Sep. 1967.
[15] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu, “A costsensitive adaptation engine for server consolidation of multitier applications,” in Proc. ACM/IFIP/USENIX Int. Middleware Conf., 2009.
[16] Ferrar, M, Gray, M., Craig-Wood, K., “Data Centre migration, G-cloud and applications store programme phase 2: Теchnical Architecture Workstrand Report,” Cabinet Office, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65044-
dc.description.abstract在網路應用服務的效能控管上最常面臨到的問題就是如何在面臨突如其來的大量需求下,依然可以保證效能目標。由於雲端技術日趨成熟,讓運算資源隨需求取得的公用運算(Utility Computing)有實現的可能。其中獲益最大的就是需求變動劇烈的網路服務,例如:線上球賽轉播或者訂票服務系統都是這類型的服務,我們預期特定的事件會導致系統使用量大幅上升。透過雲端的具備的彈性(elasticity)以及突發性(burstability)能夠讓這類型的網路服務在高度變動的需求下仍舊提供其所需的資源,然而提供資源需要花費時間(resizing time)及系統重新配置的成本及風險,因此在動態資源分配的機制下,預測需求是相當重要的環節。
本篇論文提出一套結合學習方法以及即時資訊的預測演算法,根據過去事件的變化行為利用學習方法了解造成應用程式需求變動的事件知識,加上即時的需求測量結果,預測未來一段控制區間中的需求變化,以達成預測服務需求的目標。同時為了避免低估需求導致目標效能違反地的情形,我們考慮需求本身存在的變動性(varation),提出並比較不同的安全邊際(Safety Margin)做法,找出其中有效降低低估發生機率的做法。
在實驗結果中顯示我們的方法比起傳統的回歸預測更有效的提高預測的準確度,並且在考慮安全邊際後大幅度的降低發生需求低估的機率。另外我們的方法能夠應用在需要耗費時間進行資源分配的虛擬環境中,增加了預測方法本身的實用性。
zh_TW
dc.description.abstractIn Application Performance Management (APM), the most common problem encountered by the administrators of many network service providers is how to sustain performance targets for the applications. Cloud computing offers the possibility to provide the resources on demand as Utility Computing. The internet services with highly changing demand can benefit from the implementation of cloud services rapid elasticity technology as live sport game broadcasting or online ticket booking system. We expect that specific events will cause significant increase the demand of applications. Cloud computing is elasticity and burstability, so it can help the internet services acquire necessary resources under the heavy variation of demand. However, system reallocation will take a resizing time and bring some cost and risk. The external demand prediction is an important component in dynamic resource allocation to provide target performance guarantees in cloud.
In this work, we propose a learning-based prediction model and the real-time algorithm to forecast the external demand for this class of cloud applications. We use the learning method to understand the event knowledge based on the behaviors of historical events and consider the online measurements to predict the trend of external demand in next control period. We also develop safety margin-based prediction schemes to avoid the under-estimation errors of prediction.
The experimental results show that our prediction method has more accurate prediction results than the traditional simple linear prediction methods. The use of safety margin only incurs a very small probability of under-estimation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:18:10Z (GMT). No. of bitstreams: 1
ntu-101-R99725046-1.pdf: 1783820 bytes, checksum: ca591336fb8a13db8ce2ca51ebf8fcb6 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 iii
論文摘要 iv
THESIS ABSTRACT vi
Table of Contents viii
List of Figures x
List of Tables xi
1. Introduction 1
1.1 Application Workload in the System 3
1.2 External Demand Behavior Observations: Trend, Rate and Volume 5
1.2.1 1998 World Cup Traces 6
1.2.2 2012 NBA Live Broadcast Service of Hichannel Traces 11
1.3 Dynamic Resource Provision System Model 15
2. Related Work 17
3. Real-time Demand Measurement and Control 19
4. External Demand Prediction 21
4.1 Prediction Models: Trend 21
4.1.1 Linear Regression Model for Trend 21
4.1.2 Quadratic Regression Model for Trend 25
4.1.3 Linear Regression Model for Trend of Rate Changes 25
4.2 Prediction Model with Events Behavior Learning 29
4.3 Safety Margin 34
4.3.1 Distribution of the amounts of under-estimation in history periods 35
4.3.2 Exponential Weight Moving Average of Estimation Deviations 36
5. Performance Evaluation 37
5.1 Evaluation Settings 37
5.2 Experiments and Results 39
6. Conclusion 47
Reference 48
dc.language.isoen
dc.title支援雲端應用效能管理之基於事件知識的需求預測zh_TW
dc.titleEvent Knowledge-based Prediction for Dynamic Resource Reallocation in Cloud Application Performance Managementen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳孟彰,郭佳瑋,潘育群
dc.subject.keyword應用程式效能管理,雲端運算,動態資源分配,預測,事件知識,學習,zh_TW
dc.subject.keywordapplication performance management,cloud computing,prediction,event knowledge,learning,dynamic resource allocation,en
dc.relation.page49
dc.rights.note有償授權
dc.date.accepted2012-08-01
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved