請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65033
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 俞松良 | |
dc.contributor.author | "Selina Shih-Ting, Chu" | en |
dc.contributor.author | 朱詩婷 | zh_TW |
dc.date.accessioned | 2021-06-16T23:16:34Z | - |
dc.date.available | 2015-09-18 | |
dc.date.copyright | 2012-09-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-01 | |
dc.identifier.citation | 1. Sugo, N., et al., Social stress exacerbates focal cerebral ischemia in mice. Stroke, 2002. 33(6): p. 1660-4.
2. Kendler, K.S., L.M. Karkowski, and C.A. Prescott, Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry, 1999. 156(6): p. 837-41. 3. Kessler, R.C., The effects of stressful life events on depression. Annu Rev Psychol, 1997. 48: p. 191-214. 4. Nestler, E.J., et al., Neurobiology of depression. Neuron, 2002. 34(1): p. 13-25. 5. Manji, H.K., W.C. Drevets, and D.S. Charney, The cellular neurobiology of depression. Nat Med, 2001. 7(5): p. 541-7. 6. Kessler, R.C., et al., The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA, 2003. 289(23): p. 3095-105. 7. Jain, R., The epidemiology and recognition of pain and physical symptoms in depression. J Clin Psychiatry, 2009. 70(3): p. e04. 8. Murray, C.J. and A.D. Lopez, Evidence-based health policy--lessons from the Global Burden of Disease Study. Science, 1996. 274(5288): p. 740-3. 9. Hatzinger, M., Neuropeptides and the hypothalamic-pituitary-adrenocortical (HPA) system: review of recent research strategies in depression. World J Biol Psychiatry, 2000. 1(2): p.105-11. 10. Holsboer, F., Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord, 2001. 62(1-2): p. 77-91. 11. Duman, R.S., G.R. Heninger, and E.J. Nestler, A molecular and cellular theory of depression. Arch Gen Psychiatry, 1997. 54(7): p. 597-606. 12. Duman, R.S. and L.M. Monteggia, A neurotrophic model for stress-related mood disorders. Biol Psychiatry, 2006. 59(12): p. 1116-27. 13. Belmaker, R.H. and G. Agam, Major depressive disorder. N Engl J Med, 2008. 358(1): p. 55-68. 14. Gotlib, I.H., et al., HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry, 2008. 63(9): p. 847-51. 15. Katz, R.J., Animal models and human depressive disorders. Neurosci Biobehav Rev, 1981. 5(2): p. 231-46. 16. Willner, P., Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl), 1997. 134(4): p. 319-29. 17. Strekalova, T., et al., Stress-induced hyperlocomotion as a confounding factor in anxiety and depression models in mice. Behav Pharmacol, 2005. 16(3): p. 171-80. 18. Krishnan, V. and E.J. Nestler, Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry, 2010. 167(11): p. 1305-20. 19. Mervaala, E., et al., Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med, 2000. 30(1): p. 117-25. 20. Grillon, C., Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology (Berl), 2008. 199(3): p. 421-37. 21. Packard, M.G. and L. Cahill, Affective modulation of multiple memory systems. Curr Opin Neurobiol, 2001. 11(6): p. 752-6. 22. McIntyre, C.K., et al., Role of the basolateral amygdala in memory consolidation. Ann N Y Acad Sci, 2003. 985: p. 273-93. 23. Chien, C.T., et al., Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant, 2005. 5(6): p. 1194-203. 24. Sedaghat, F. and A. Notopoulos, S100 protein family and its application in clinical practice. Hippokratia, 2008. 12(4): p. 198-204. 25. Liao, A.H., et al., Non-Invasive imaging of small-animal tumors: high-frequency ultrasound vs. MicroPET. Conf Proc IEEE Eng Med Biol Soc, 2005. 6: p. 5695-8. 26. Nestler, E.J. and S.E. Hyman, Animal models of neuropsychiatric disorders. Nat Neurosci, 2010. 13(10): p. 1161-9. 27. Hasler, G., et al., Discovering endophenotypes for major depression. Neuropsychopharmacology, 2004. 29(10): p. 1765-81. 28. Ressler, K.J. and H.S. Mayberg, Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci, 2007. 10(9): p. 1116-24. 29. Willner, P., R. Muscat, and M. Papp, Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev, 1992. 16(4): p. 525-34. 30. Kessler, R.C., et al., Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry, 1994. 51(1): p. 8-19. 31. Hercher, C., G. Turecki, and N. Mechawar, Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res, 2009. 43(11): p. 947-61. 32. Karege, F., et al., Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res, 2005. 136(1-2): p. 29-37. 33. Soetanto, A., et al., Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch Gen Psychiatry, 2010. 67(5): p. 448-57. 34. Saus, E., et al., Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet, 2010. 19(20): p. 4017-25. 35. Sullivan, G.M., et al., Low levels of transthyretin in the CSF of depressed patients. Am J Psychiatry, 1999. 156(5): p. 710-5. 36. Riisoen, H., Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer's disease. Acta Neurol Scand, 1988. 78(6): p. 455-9. 37. Palha, J.A., et al., Transthyretin gene in Alzheimer's disease patients. Neurosci Lett, 1996. 204(3): p. 212-4. 38. Sousa, J.C., et al., Transthyretin is involved in depression-like behaviour and exploratory activity. J Neurochem, 2004. 88(5): p. 1052-8. 39. Fleming, C.E., A.F. Nunes, and M.M. Sousa, Transthyretin: more than meets the eye. Prog Neurobiol, 2009. 89(3): p. 266-76. 40. Ghavami, S., et al., S100A8/A9: a Janus-faced molecule in cancer therapy and tumorgenesis. Eur J Pharmacol, 2009. 625(1-3): p. 73-83. 41. Gebhardt, C., et al., S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol, 2006. 72(11): p. 1622-31. 42. Akiyama, H., et al., Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J Neuroimmunol, 1994. 50(2): p. 195-201. 43. Ryu, M.J., et al., Oncogenic Kras expression in postmitotic neurons leads to S100A8/A9 overexpression and gliosis. J Biol Chem, 2012. 44. Schmidt, E.F., et al., Identification of the Cortical Neurons that Mediate Antidepressant Responses. Cell, 2012. 149(5): p. 1152-63. 45. Denis, C.V., Molecular and cellular biology of von Willebrand factor. Int J Hematol, 2002. 75(1): p. 3-8. 46. Hope, S., et al., Similar immune profile in bipolar disorder and schizophrenia: selective increase in soluble tumor necrosis factor receptor I and von Willebrand factor. Bipolar Disord, 2009. 11(7): p. 726-34. 47. Hope, S., et al., Affective symptoms are associated with markers of inflammation and immune activation in bipolar disorders but not in schizophrenia. J Psychiatr Res, 2011. 45(12): p. 1608-16. 48. Geiser, F., et al., Association between anxiety and factors of coagulation and fibrinolysis. Psychother Psychosom, 2008. 77(6): p. 377-83. 49. Staton, C.A., et al., Neuropilins in physiological and pathological angiogenesis. J Pathol, 2007. 212(3): p. 237-48. 50. Schwarz, Q., et al., Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development, 2008. 135(9): p. 1605-13. 51. Jubb, A.M., et al., Neuropilin-1 expression in cancer and development. J Pathol, 2012. 226(1): p. 50-60. 52. Savitz, J. and W.C. Drevets, Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev, 2009. 33(5): p. 699-771. 53. Savitz, J., et al., Amygdala volume in depressed patients with bipolar disorder assessed using high resolution 3T MRI: the impact of medication. Neuroimage, 2010. 49(4): p. 2966-76. 54. Lenertz, L.Y., et al., Cell signaling via the P2X(7) nucleotide receptor: linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal, 2009. 5(2): p. 175-87. 55. Lovell, M.A. and W.R. Markesbery, Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer's disease. Nucleic Acids Res, 2007. 35(22): p. 7497-504. 56. Uttara, B., et al., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol, 2009. 7(1): p. 65-74. 57. Poon, H.F., et al., Free radicals and brain aging. Clin Geriatr Med, 2004. 20(2): p. 329-59. 58. Michel, T.M., et al., Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder--a postmortem study. Psychiatry Res, 2007. 151(1-2): p. 145-50. 59. Dowlati, Y., et al., A meta-analysis of cytokines in major depression. Biol Psychiatry, 2010. 67(5): p. 446-57. 60. Miller, A.H., V. Maletic, and C.L. Raison, Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 2009. 65(9): p. 732-41. 61. Dunn, A.J., A.H. Swiergiel, and R. de Beaurepaire, Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev, 2005. 29(4-5): p. 891-909. 62. Koo, J.W., et al., Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A, 2010. 107(6): p. 2669-74. 63. Baud'huin, M., et al., RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases. Cell Mol Life Sci, 2007. 64(18): p. 2334-50. 64. Birkenaes, A.B., et al., The level of cardiovascular risk factors in bipolar disorder equals that of schizophrenia: a comparative study. J Clin Psychiatry, 2007. 68(6): p. 917-23. 65. Hofbauer, L.C. and M. Schoppet, Serum measurement of osteoprotegerin--clinical relevance and potential applications. Eur J Endocrinol, 2001. 145(6): p. 681-3. 66. Sarnico, I., et al., NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol, 2009. 85: p. 351-62. 67. Matsuura, N., et al., Sonic hedgehog facilitates dopamine differentiation in the presence of a mesencephalic glial cell line. J Neurosci, 2001. 21(12): p. 4326-35. 68. Hynes, M., et al., Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron, 1995. 15(1): p. 35-44. 69. Meyerowitz, B.E., K. Kurita, and L.M. D'Orazio, The psychological and emotional fallout of cancer and its treatment. Cancer J, 2008. 14(6): p. 410-3. 70. Williams, J.B., et al., A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev Res (Phila), 2009. 2(10): p. 850-61. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65033 | - |
dc.description.abstract | 研究背景: 生活的壓力源自於複雜的社交及環境因子,負向壓力常會導致負向情緒的產生因而產生許多精神疾患,或影響到神經-內分泌-免疫系統的平衡造成其他病症。迄今為止,壓力所導致之神經系統之各項功能性變化的機制仍待釐清。研究方法:我們建立了四週的慢性緩和性壓力動物模式以模擬人類在日常生活中所受之壓力源,並引起老鼠的憂鬱焦慮行為。藉每週三項行為測試:轉輪、懸尾、強迫游泳測試來評量老鼠的憂鬱焦慮行為變化,並以核磁共振造影及小動物正子攝影觀察腦部變化。於實驗終點分別收取老鼠眼眶血探測活性氧化物及細胞激素;取尿液進行代謝體分析;取腦部之杏仁核、海馬迴、前額葉皮層、大腦皮質等四個部位,進行全基因體晶片分析及微核糖核酸晶片分析,資料再經GeneSpring GX 與Metacore 軟體加以探討可能參與壓力導致之神經疾患之訊息傳遞路徑。第二部份則藉由靜脈及皮下注射肺癌細胞株來探討情緒對癌症進程與轉移的影響。初步結果:四週後壓力組老鼠較對照組有顯著的體重減輕(9%,p<0.0001),在行為測試中不動時間增長。腦部基因體的分析顯示,大於兩倍變化且有顯著差異(FDR<0.05)的基因,在前述四部位中各有505、272、51、331個;利用此1005 個基因進行階層式群集分析可明白區分出各腦區及實驗與對照組。大於兩倍變化且有顯著差異的微核糖核酸各有115、61、62、60 個。結果揭露不只大量的基因在龐大的訊息傳遞網路中參與壓力與情緒的調控,微核糖核酸也扮演重要角色。在Metacore 分析的結果中,許多有高倍變化的基因所調控的訊息路徑皆和神經疾病、神經系統發育、神經細胞生長、軸突神經導引、細胞訊息傳遞等功能相關。在癌症進程與轉移研究部份則因多次實驗結果變異太大尚無法下結論。結論:本研究提供了壓力誘發神經異常在分子病理機轉上的新觀點,針對壓力誘發之基因群進行研究,找出專一作用的分子與藥物,或有助於治療相關疾病。 | zh_TW |
dc.description.abstract | Background: Stressful life events which consist of social or environmental distresses (negative stressors) commonly cause emotional change and thus lead to disorders on psychiatry or other neuro-endocrine-immune axis. The mechanisms of stress-caused functional changes in neuronal system remain unclear.
Methods: We utilized 4-week CMS (Chronic Mild Stress) animal model mimicking the daily hassles from social or environments to provoke the unset of depression- or anxiety- like behaviors. Behavior evaluation (wheel-running, tail suspension, and forced swimming tests) were performed every week. MRI and microPET were also performed to observe the change of brain. At the endpoint, mice were sacrificed, the blood were collected for ROS analysis and cytokine array, while the urine were gathered for metabolomic assay, and the four parts including amygdala, hippocampus, prefrontal cortex and cerebral cortex of the brain were collected for whole genome gene and microRNA profiling. The microarray data were analyzed by GeneSpring, Metacore software to explore the potential pathways involved in neuro-pathologenesis under stress. Besides, we injected two lung cancer cell lines both intravenously and subcutaneously to see if emotion has any relations to cancer progression and metastasis. Results: Mice under CMS exhibits reduced motor activity and increased weight loss. The results of gene profiling show there were 505 genes with two-fold change in amygdala, 272 in hippocampus, 51 in prefrontal cortex and 331 in cerebral cortex while microRNA profiling showed 115, 61, 62and 60 microRNAs with two-fold change in these four parts respectively. These total 1005 genes with two-fold change are chosen for hierarchical clustering and can distinguish either the brain parts or treatment. The results reveal its tight connection to emotion regulation to the not only the genes but also the microRNAs. Most of CMS-affected genes are predicted to be involved in great networks related to neurological disease, nervous system development, cell growth, axon guidance, and transduction signaling, as well as many known or unknown genes that reportedly affect psychiatry. But there’s no enough evidence to conclude if emotion’s positively or negatively related to cancer progression and metastasis. Conclusion: These findings might provide insights into the molecular pathological mechanisms contributing to stress-induced neural malfunctions. Searching for compounds or drugs that can target the chronic stress-induced genes may be a potential therapy for related diseases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:16:34Z (GMT). No. of bitstreams: 1 ntu-101-R98424014-1.pdf: 10644007 bytes, checksum: 66698198abf67912bf1863d75246bc9d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝..................................ii
中文摘要..............................iii 英文摘要.........................................v Chapter 1. Introduction ..................................1 1.1 Introduction......................................... 2 1.2 Specific aim .........................................4 1.3 Experimental design ..................................5 Chapter 2. Materials and Methods .........................7 2.1 Animal handling ......................................8 2.2 CMS procedure.........................................8 2.2.1 Housing to rat......................................8 2.2.2 Cage tilting 45°....................................9 2.2.3 Cage shaking........................................9 2.2.4 Water in sawdust bedding............................9 2.2.5 Small restricted cage...............................9 2.2.6 Flash Light.........................................9 2.2.7 Water emergency.....................................9 2.2.8 Individual Isolation...............................10 2.2.9 Tail pinch.........................................10 2.2.10 Continuous light..................................10 2.3 Behavioral evaluations...............................10 2.3.1 Running wheel test ................................11 2.3.2 Forced swimming test...............................11 2.3.3 Tail suspension test...............................11 2.4 RNA extraction ......................................11 2.5 Microarray analysis..................................12 2.5.1 Whole genome gene profiling........................12 2.5.2 MicroRNA profiling.................................13 2.6 Quantitative Real-time PCR...........................14 2.7 In vitro chemiluminescence recording for ROS activity.15 2.8 microPET..............................................16 Chapter 3. Primary results................................18 3.1 A successfully established CMS mouse model which induces body weight loss and behavioral change..................19 3.2 Profiling of microRNA expression in the four brain parts.........................................................19 3.2.1microRNA expressions altered under CMS..........................................................................19 3.2.2 Amygdala exhibits the most numerous numbers ofCMS affected microRNAs...........................................20 3.2.3 The commonly CMS-affected microRNAs and in the 4 brain parts...................................................21 3.3 Profiling Analysis of Affymetrix 430 2.0 mouse array.............................................................21 3.3.1 Gene expression in brain altered under CMS.....................................................................21 3.3.2 Hippocampus as a unique part...................................................................................22 3.3.3 Amygdala exhibits the most numerous numbers of CMS-affected genes..............................................22 3.3.4 S100a8 and 1447329_at are two commonly CMS-affected genes in the 4 brain parts.................................23 3.4 Transthyretin(Ttr) is a potential downstream target related to mental disorders..................................23 3.5 QPCR validations of the maximally up- and down- regulated genes in the 4 brain parts.............................24 3.6 Compared analysis of the four brain parts using Metacore Version6.10.............................................25 3.7 Analysis of the CMS-affected genes in Amygdala...................................................................26 3.8 Analysis of the CMS-affected genes in Hippocampus................................................................27 3.9 Analysis of the CMS-affected genes in CC.........................................................................28 3.10 Analysis of the CMS-affected genes in PFC.......................................................................29 3.11 Search of genes related to neurogenesis and neurite growth......................................................29 3.12 CMS and its relation to cancer progression and migration........................................................31 3.13 Small animal PET failed to reveal the change of glucose uptake due to the resolution............................32 3.14 ROS with higher expression in the control group than the CMS group..............................................=33 Chapter 4. Disscussion....................................34 Chapter 5. Figures........................................48 Chapter 6. Tables.........................................85 Chapter 7. Supplementary data.............................92 Chapter 8. Appendix......................................102 Chapter 9. Reference.....................................104 | |
dc.language.iso | en | |
dc.title | 慢性緩和性壓力誘發神經異常之全基因體研究 | zh_TW |
dc.title | Genome-wide Survey of Chronic Mild Stress Induced Neural Malfunction | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉宏輝,賴文崧,蘇剛毅 | |
dc.subject.keyword | 慢性緩和性壓力,基因晶片,微核醣核酸,杏仁核,海馬迴,前額葉皮層,大腦皮質, | zh_TW |
dc.subject.keyword | CMS,affymetrix array,microRNA,Amygdala,Hippocampus,Prefrontal cortex,Cerebral cortex, | en |
dc.relation.page | 114 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-08-01 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 10.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。