請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65022完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方偉宏 | |
| dc.contributor.author | Chien-Ju Lin | en |
| dc.contributor.author | 林千如 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:15:52Z | - |
| dc.date.available | 2012-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | Astatke, M., Grindley, N.D., and Joyce, C.M. (1998). How E. coli DNA polymerase I (Klenow fragment) distinguishes between deoxy- and dideoxynucleotides. J Mol Biol 278, 147-165.
Barrett, T.E., Savva, R., Panayotou, G., Barlow, T., Brown, T., Jiricny, J., and Pearl, L.H. (1998). Crystal structure of a G:T/U mismatch-specific DNA glycosylase: mismatch recognition by complementary-strand interactions. Cell 92, 117-129. Bebenek, K., Pedersen, L.C., and Kunkel, T.A. (2011). Replication infidelity via a mismatch with Watson-Crick geometry. Proc Natl Acad Sci U S A 108, 1862-1867. Beese, L.S., Derbyshire, V., and Steitz, T.A. (1993). Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260, 352-355. Bell, J.B., Eckert, K.A., Joyce, C.M., and Kunkel, T.A. (1997). Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of the fingers subdomain. J Biol Chem 272, 7345-7351. Bell, S.P., and Dutta, A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-374. Bhagwat, A.S., and Lieb, M. (2002). Cooperation and competition in mismatch repair: very short-patch repair and methyl-directed mismatch repair in Escherichia coli. Molecular microbiology 44, 1421-1428. Brautigam, C.A., Sun, S., Piccirilli, J.A., and Steitz, T.A. (1999). Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli. Biochemistry 38, 696-704. Brown, T., Hunter, W.N., Kneale, G., and Kennard, O. (1986). Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci U S A 83, 2402-2406. Brutlag, D., and Kornberg, A. (1972). Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem 247, 241-248. Catherine, M.J., and Steitz, T.A. (1987). DNA polymerase I: from crystal structure to function via genetics. Trends in Biochemical Sciences 12, 288-292. Cowart, M., Gibson, K.J., Allen, D.J., and Benkovic, S.J. (1989). DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Biochemistry 28, 1975-1983. Crick, F.H. (1966). Codon--anticodon pairing: the wobble hypothesis. J Mol Biol 19, 548-555. Derbyshire, V., Grindley, N.D., and Joyce, C.M. (1991). The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J 10, 17-24. Dohet, C., Wagner, R., and Radman, M. (1985). Repair of defined single base-pair mismatches in Escherichia coli. Proc Natl Acad Sci U S A 82, 503-505. Donlin, M.J., Patel, S.S., and Johnson, K.A. (1991). Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538-546. Fang, W., Wu, J.Y., and Su, M.J. (1997). Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli. J Biol Chem 272, 22714-22720. Fersht, A.R., and Knill-Jones, J.W. (1981). DNA polymerase accuracy and spontaneous mutation rates: frequencies of purine.purine, purine.pyrimidine, and pyrimidine.pyrimidine mismatches during DNA replication. Proc Natl Acad Sci U S A 78, 4251-4255. Fox, K.R., Allinson, S.L., Sahagun-Krause, H., and Brown, T. (2000). Recognition of GT mismatches by Vsr mismatch endonuclease. Nucleic acids research 28, 2535-2540. Freemont, P.S., Friedman, J.M., Beese, L.S., Sanderson, M.R., and Steitz, T.A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc Natl Acad Sci U S A 85, 8924-8928. Freemont, P.S., Ollis, D.L., Steitz, T.A., and Joyce, C.M. (1986). A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity. Proteins 1, 66-73. Friedberg, E.C., G.C. Walker, and W. Siede (1995). DNA repair and mutagenesis. In (Washington, D.C: ASM Press ). Garg, A., Chugh, M., Gaikwad, S.B., Chandra, S.P., Gupta, V., Mishra, N.K., and Sharma, M.C. (2004). Juvenile pilocytic astrocytoma presenting with subarachnoid hemorrhage. Case report and review of the literature. J Neurosurg 100, 525-529. Glickman, B.W., and Radman, M. (1980). Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A 77, 1063-1067. Hang, B., Medina, M., Fraenkel-Conrat, H., and Singer, B. (1998). A 55-kDa protein isolated from human cells shows DNA glycosylase activity toward 3,N4-ethenocytosine and the G/T mismatch. Proc Natl Acad Sci U S A 95, 13561-13566. Hunter, O.K.a.W.N. (1991). Single-Crystal X-Ray Diffraction Studies of Oligonucleotides and Oligonucleotide-Drug Complexes. Angew Chem I n t Ed Engl 30. Jeremy M Berg, J.L.T., and Lubert Stryer (2002). Section 27.2DNA Polymerases Require a Template and a Primer. Biochemistry, 5th edition. Joyce, C.M., Kelley, W.S., and Grindley, N.D. (1982). Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I. J Biol Chem 257, 1958-1964. Joyce, C.M., and Steitz, T.A. (1994). Function and structure relationships in DNA polymerases. Annu Rev Biochem 63, 777-822. Kaguni, L.S. (2004). DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem 73, 293-320. Klenow, H., and Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proc Natl Acad Sci U S A 65, 168-175. Kramer, B., Kramer, W., and Fritz, H.J. (1984). Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38, 879-887. Kukreti, P., Singh, K., Ketkar, A., and Modak, M.J. (2008). Identification of a new motif required for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex. J Biol Chem 283, 17979-17990. Kunkel, T.A., and Bebenek, K. (2000). DNA replication fidelity. Annu Rev Biochem 69, 497-529. Lam, W.C., Van der Schans, E.J., Sowers, L.C., and Millar, D.P. (1999). Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Biochemistry 38, 2661-2668. Lee, C.C., Yang, Y.C., Goodman, S.D., Yu, Y.H., Lin, S.B., Kao, J.T., Tsai, K.S., and Fang, W.H. (2010). Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair (Amst) 9, 1073-1079. Lehman, I.R., Bessman, M.J., Simms, E.S., and Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J Biol Chem 233, 163-170. Lehman, I.R., and Chien, J.R. (1973). Persistence of deoxyribonucleic acid polymerase I and its 5'--3' exonuclease activity in PolA mutants of Escherichia coli K12. J Biol Chem 248, 7717-7723. Li, Y., Korolev, S., and Waksman, G. (1998). Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J 17, 7514-7525. Loft, S., and Poulsen, H.E. (1996). Cancer risk and oxidative DNA damage in man. J Mol Med (Berl) 74, 297-312. Lu, A.L., Clark, S., and Modrich, P. (1983). Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A 80, 4639-4643. Martinez, J.M., Elmroth, S.K., and Kloo, L. (2001). Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: a molecular dynamics study. Journal of the American Chemical Society 123, 12279-12289. Matsumoto, Y., and Kim, K. (1995). Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science 269, 699-702. McCain, M.D., Meyer, A.S., Schultz, S.S., Glekas, A., and Spratt, T.E. (2005). Fidelity of mispair formation and mispair extension is dependent on the interaction between the minor groove of the primer terminus and Arg668 of DNA polymerase I of Escherichia coli. Biochemistry 44, 5647-5659. Morales, J.C., and Kool, E.T. (2000). Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I. Biochemistry 39, 2626-2632. Mullen, G.P., Shenbagamurthi, P., and Mildvan, A.S. (1989). Substrate and DNA binding to a 50-residue peptide fragment of DNA polymerase I. Comparison with the enzyme. J Biol Chem 264, 19637-19647. Napolitano, R., Janel-Bintz, R., Wagner, J., and Fuchs, R.P. (2000). All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19, 6259-6265. Nusslein, V., Otto, B., Bonhoeffer, F., and Schaller, H. (1971). Function of DNA polymerase 3 in DNA replication. Nat New Biol 234, 285-286. Ollis, D.L., Brick, P., Hamlin, R., Xuong, N.G., and Steitz, T.A. (1985). Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313, 762-766. Patel, P.H., Suzuki, M., Adman, E., Shinkai, A., and Loeb, L.A. (2001). Prokaryotic DNA polymerase I: evolution, structure, and 'base flipping' mechanism for nucleotide selection. J Mol Biol 308, 823-837. Patel, S.S., Wong, I., and Johnson, K.A. (1991). Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511-525. Polesky, A.H., Dahlberg, M.E., Benkovic, S.J., Grindley, N.D., and Joyce, C.M. (1992). Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli. J Biol Chem 267, 8417-8428. Polesky, A.H., Steitz, T.A., Grindley, N.D., and Joyce, C.M. (1990). Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem 265, 14579-14591. Pursell, Z.F., Isoz, I., Lundstrom, E.B., Johansson, E., and Kunkel, T.A. (2007). Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127-130. Que, B.G., Downey, K.M., and So, A.G. (1978). Mechanisms of selective inhibition of 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I by nucleoside 5'-monophosphates. Biochemistry 17, 1603-1606. Radman, M., and Wagner, R. (1984). Effects of DNA methylation on mismatch repair, mutagenesis, and recombination in Escherichia coli. Current topics in microbiology and immunology 108, 23-28. Reddy, M.K., Weitzel, S.E., and von Hippel, P.H. (1992). Processive proofreading is intrinsic to T4 DNA polymerase. J Biol Chem 267, 14157-14166. Schaaper, R.M. (1993). Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268, 23762-23765. Seeman, N.C., Rosenberg, J.M., and Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci U S A 73, 804-808. Simon, M., Giot, L., and Faye, G. (1991). The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J 10, 2165-2170. Steitz, T.A. (1998). A mechanism for all polymerases. Nature 391, 231-232. Thompson, E.H., Bailey, M.F., van der Schans, E.J., Joyce, C.M., and Millar, D.P. (2002). Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment. Biochemistry 41, 713-722. Tom Brown, O.K. (1992). Structural basis of DNA mutagenesis Current Opinion in Structural Biology 2, 354-360. Tuske, S., Singh, K., Kaushik, N., and Modak, M.J. (2000). The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions. J Biol Chem 275, 23759-23768. Wagner, R., Dohet, C., Jones, M., Doutriaux, M.P., Hutchinson, F., and Radman, M. (1984). Involvement of Escherichia coli mismatch repair in DNA replication and recombination. Cold Spring Harbor symposia on quantitative biology 49, 611-615. Watson, J.D., and Crick, F.H. (1953). Genetical implications of the structure of deoxyribonucleic acid. Nature 171, 964-967. Wong, I., Patel, S.S., and Johnson, K.A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526-537. Woodgate, R. (1999). A plethora of lesion-replicating DNA polymerases. Genes Dev 13, 2191-2195. Yu-Jane Sheng, H.-J.L., Jeff Z. Y. Chen, Heng-Kwong Tsao (2004). Static Properties of a Stacking Chain. Macromolecules 37, 9631-9638. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65022 | - |
| dc.description.abstract | DNA為生物體之遺傳物質,其高度複製忠誠度(fidelity)對維持基因穩定性及預防突變發生甚為重要。DNA聚合酶主要透過三種方式降低複製錯誤率:鹼基選擇性配對(base selection)、3端往5端外切酶(3’→5’ exonuclease)之校正能力(proofreading activity)及錯誤配對修復機制(mismatch repair system)。
相關研究指出DNA聚合酶能夠移除引子末端鹼基或末端連續兩個錯誤鹼基,但尚未有研究證實DNA聚合酶能夠校正引子末端倒數第二個配對錯誤鹼基。本實驗室發表文獻指出當DNA聚合酶I與DNA內切酶V(endonuclease V)、DNA連接酶(DNA ligase)及dNTP共同存在下能夠修復G-dI的錯誤配對,應是由DNA內切酶V切斷dI上游第二個磷酸雙酯鍵,活化DNA聚合酶I校正活性導致。為釐清此現象,我們製造十二種斷股上游第二個鹼基為錯誤配對之受質模擬引子與模板交會處,分析DNA聚合酶I對十二種受質之校正活性。 排除DNA聚合酶I行缺口轉譯(nick translation)的可能性後,結果顯示十二種受質皆可以被DNA聚合酶I修復,以purine.purine校正活性最好,purine.pyrimidine校正活性最差(C-A例外)。部分受質在低離子強度(50mM NaCl)下校正活性較好,例如A-C、T-G、G-G、C-T、T-C、A-A;C-C則在高或低離子強度下具有不同的校正活性。我們認為離子可能影響DNA聚合酶I或配對錯誤受質結構上的改變,但其確切造成的影響仍需進一步研究。 文獻顯示purine.purine是出現頻率最高的錯誤配對,兩個大的purine結合造成結構上扭曲,可能造成校正活性較高,得以將發生率高的錯誤配對進行修復。並且,有文獻顯示purine的鹼基堆疊力(base stacking force)較大,並且其N7官能基較易與DNA聚合酶I外切酶活化位之胺基酸結合,也可能提高其校正活性,在我們的研究中發現,當錯誤鹼基為purine且位於引子上時,其校正活性明顯較高,但T-G例外。而purine.pyrimidine則因為其結構與正確配對的Watson-Crick base pairing相似,導致校正活性微弱,但可經由錯誤配對修復機制補償。此外,當DNA聚合酶I往上游切除錯誤鹼基後,往下游繼續行聚合反應時,gap-form受質由於不需要DNA聚合酶I執行5端往3端外切酶活性即可聚合,因此有較高的校正活性。 本篇論文證實DNA聚合酶I之校正活性不僅能移除引子末端錯誤鹼基,其確實能夠校正斷股上游第二個鹼基為錯誤配對之受質,得以解釋本實驗室先前發表論文G-dI之修復現象。並且,DNA聚合酶I不僅能修復正常的鹼基,對於dI此種被修飾過的鹼基也具有校正活性。 | zh_TW |
| dc.description.abstract | DNA carries genetic information in all organisms. During DNA replication, it is important to maintain genomic fidelity. Three correlating events operate in maintaining the high fidelity of genome:The first is base selection. The second is the proofreading activities of DNA polymerases, which can remove the last mismatched DNA at the primer-template junction. The third is DNA repair systems.
To date, there is no evidence showing that the mismatched DNA at penultimate site of the primer can be edited by DNA polymerase I. Our previous study showed that the proofreading activity of DNA polymerase I could edit deoxyinosine-containing heteroduplex DNA after processing by endonuclease V which created a strand breakage at the second phosphodiester bond 3’ to the deoxyinosine. To figure out how it works, we constructed twelve heteroduplex DNA containing single mismatch at penultimate site of the primer and analysed the proofreading activity. The involvement of nick translation activity of DNA polymerase I was eliminated. Our results showed that all the twelve heteroduplex DNA can be edited by proofreading activity of DNA polymerase I and there were no general roles for trend of ionic strength in our proofreading assay. We identified purine.purine, the most frequently misinserted mismatches, could be edited well. According to the structure analysis, two large purine bases cause considerable strand strain that may lead to proofreading efficiency elevated. However, purine.pyrimidine mismatches were poorly edited probably due to these structures were similar to the correct Watson-Crick base pairs with minor distortion but the C-A could be edited well. Furthermore, the mismatch repair system had high efficiency to repair purine.pyrimidine mismatches can compensate to poorly proofreading activity. On the other hand, the large purine bases have increased stacking ability and the common N7 groups may be preferred to bind with the amino acid residue of exonuclease site. We found that the misbase on the primer strand had the more efficiency of proofreading activity but the T-G was not. Besides, we identified that gap-form substrate had better proofreading activity than nick-form. After removing the wrong base, DNA polymerase I will undergo polymerization. As a result of DNA carrying out polymerization without 5’ to 3’exonuclease activity with the gap-form substrate, it has higher proofreading efficiency. Conclusively, we identified the proofreading activity of DNA polymerase I can edit DNA mismatches at the penultimate site of the primer. In addition to our previous study, the DNA polymerase I actually could edit deoxyinosine-containing heteroduplex DNA which containing a strand breakage at the second phosphodiester bond 3’ to the deoxyinosine. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:15:52Z (GMT). No. of bitstreams: 1 ntu-101-R99424013-1.pdf: 2411785 bytes, checksum: 96043ff83844f6170ef918ef6495644d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 總目次 V 圖目次 VII 表目次 VIII 附錄目次 IX 縮寫表 X 前言 1 材料與方法 8 一、菌株(bacteria strain) 8 二、載體(vector) 8 三、酵素 8 四、突變噬菌體f1PM mutant之建構 8 五、f1PM mutant複製型雙股DNA之製備 9 六、f1PM mutant單股DNA之製備 10 七、nick及gap上游第二個鹼基為配對錯誤受質之製備 11 八、配對錯誤受質對鑑定酵素之敏感性分析 12 九、DNA聚合酶I於nick-form或gap-form配對錯誤受質之校正活性測定 12 十、DNA聚合酶I於線性配對錯誤受質之校正活性測定 13 實驗結果 14 一、配對錯誤受質對鑑定酵素之敏感性分析 14 二、低離子強度(50mM NaCl)下,DNA聚合酶I對配對錯誤受質之 校正活性測定 14 三、低離子強度(50mM NaCl)下,DNA聚合酶I對十二種配對錯誤校正之反應速率分析 15 四、高離子強度(100mM NaCl)下,DNA聚合酶I於配對錯誤受質 之校正活性測定 15 五、高離子強度(100mM NaCl)下,DNA聚合酶I對十二種配對錯誤校正之反應速率分析 16 六、低離子強度(50mM NaCl)及高離子強度(100mM NaCl)下, 不同濃度之DNA聚合酶I於gap-form配對錯誤受質之校正活性測定 16 七、低離子強度(50mM NaCl)及高離子強度(100mM NaCl)下, DNA 聚合酶I於nick-form與gap-form配對錯誤受質之校正活性分析 17 八、不同濃度之DNA聚合酶I於線性配對錯誤受質之校正活性測定 17 討論 18 附圖 23 附表 43 附錄 47 參考文獻 50 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異雙股核酸 | zh_TW |
| dc.subject | 核酸聚合酶 | zh_TW |
| dc.subject | 限制酵素 | zh_TW |
| dc.subject | 錯誤配對 | zh_TW |
| dc.subject | 核酸複製忠誠度 | zh_TW |
| dc.subject | 活性 | zh_TW |
| dc.subject | 核酸外切酶 | zh_TW |
| dc.subject | 校正反應 | zh_TW |
| dc.subject | 核酸聚合酶 | zh_TW |
| dc.subject | restriction enzyme | en |
| dc.subject | fidelity | en |
| dc.subject | DNA polymerase | en |
| dc.subject | DNA polymerase I | en |
| dc.subject | exonuclease activity | en |
| dc.subject | mismatch | en |
| dc.subject | proofreading | en |
| dc.subject | heteroduplex DNA | en |
| dc.title | DNA聚合酶I於引子末端倒數第二個配對錯誤鹼基校正活性之全面分析 | zh_TW |
| dc.title | The Proofreading Spectrum of DNA polymerase I to the Different Single Mismatches at 3’-Penultimate Site of the Primer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許濤,高照村,蔡芷季 | |
| dc.subject.keyword | 校正反應,核酸複製忠誠度,核酸聚合酶,核酸聚合酶,I,核酸外切酶,活性,錯誤配對,限制酵素,異雙股核酸, | zh_TW |
| dc.subject.keyword | proofreading,fidelity,DNA polymerase,DNA polymerase I,exonuclease activity,mismatch,restriction enzyme,heteroduplex DNA, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
