請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65011完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 溫進德 | |
| dc.contributor.author | Cheng-Han Wu | en |
| dc.contributor.author | 吳承翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:15:05Z | - |
| dc.date.available | 2012-08-10 | |
| dc.date.copyright | 2012-08-10 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | Abels, J. A., F. Moreno-Herrero, et al. (2005). 'Single-molecule measurements of the persistence length of double-stranded RNA.' Biophys J 88(4): 2737-2744.
Agalarov, S. C., G. Sridhar Prasad, et al. (2000). 'Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain.' Science 288(5463): 107-113. Allison, D. P., P. Hinterdorfer, et al. (2002). 'Biomolecular force measurements and the atomic force microscope.' Curr Opin Biotechnol 13(1): 47-51. Ashkin, A., J. M. Dziedzic, et al. (1986). 'Observation of a single-beam gradient force optical trap for dielectric particles.' Opt Lett 11(5): 288. Ban, N., P. Nissen, et al. (2000). 'The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.' Science 289(5481): 905-920. Binnig, G., C. F. Quate, et al. (1986). 'Atomic force microscope.' Phys Rev Lett 56(9): 930-933. Block, S. M., L. S. Goldstein, et al. (1990). 'Bead movement by single kinesin molecules studied with optical tweezers.' Nature 348(6299): 348-352. Boehringer, D. and N. Ban (2007). 'Trapping the ribosome to control gene expression.' Cell 130(6): 983-985. Bonin, M., R. Zhu, et al. (2002). 'Analysis of RNA flexibility by scanning force spectroscopy.' Nucleic Acids Res 30(16): e81. Brau, R. R., P. B. Tarsa, et al. (2006). 'Interlaced optical force-fluorescence measurements for single molecule biophysics.' Biophys J 91(3): 1069-1077. Brenner, M. D., R. Zhou, et al. (2011). 'Forcing a connection: impacts of single-molecule force spectroscopy on in vivo tension sensing.' Biopolymers 95(5): 332-344. Brunel, C., R. Marquet, et al. (2002). 'RNA loop-loop interactions as dynamic functional motifs.' Biochimie 84(9): 925-944. Bustamante, C., J. F. Marko, et al. (1994). 'Entropic elasticity of lambda-phage DNA.' Science 265(5178): 1599-1600. Bustamante, J. O., A. Liepins, et al. (1995). 'Patch clamp and atomic force microscopy demonstrate TATA-binding protein (TBP) interactions with the nuclear pore complex.' J Membr Biol 146(3): 263-272. Clausen-Schaumann, H., M. Seitz, et al. (2000). 'Force spectroscopy with single bio-molecules.' Curr Opin Chem Biol 4(5): 524-530. Collin, D., F. Ritort, et al. (2005). 'Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies.' Nature 437(7056): 231-234. Downey, C. D., J. L. Fiore, et al. (2006). 'Metal ion dependence, thermodynamics, and kinetics for intramolecular docking of a GAAA tetraloop and receptor connected by a flexible linker.' Biochemistry 45(11): 3664-3673. Dumont, S., W. Cheng, et al. (2006). 'RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP.' Nature 439(7072): 105-108. Ehresmann, C., C. Philippe, et al. (1995). 'A pseudoknot is required for efficient translational initiation and regulation of the Escherichia coli rpsO gene coding for ribosomal protein S15.' Biochem Cell Biol 73(11-12): 1131-1140. Erickson, D., X. Serey, et al. (2011). 'Nanomanipulation using near field photonics.' Lab Chip 11(6): 995-1009. Farabaugh, P. J. (1996). 'Programmed translational frameshifting.' Microbiol Rev 60(1): 103-134. Gosse, C. and V. Croquette (2002). 'Magnetic tweezers: micromanipulation and force measurement at the molecular level.' Biophys J 82(6): 3314-3329. Greenleaf, W. J., K. L. Frieda, et al. (2008). 'Direct observation of hierarchical folding in single riboswitch aptamers.' Science 319(5863): 630-633. Gross, S. P. (2003). 'Application of optical traps in vivo.' Methods Enzymol 361: 162-174. Hansen, T. M., S. N. Reihani, et al. (2007). 'Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.' Proc Natl Acad Sci U S A 104(14): 5830-5835. Itoh, H., A. Takahashi, et al. (2004). 'Mechanically driven ATP synthesis by F1-ATPase.' Nature 427(6973): 465-468. Kerssemakers, J. W., E. L. Munteanu, et al. (2006). 'Assembly dynamics of microtubules at molecular resolution.' Nature 442(7103): 709-712. Koster, D. A., K. Palle, et al. (2007). 'Antitumour drugs impede DNA uncoiling by topoisomerase I.' Nature 448(7150): 213-217. Lang, M. J. and S. M. Block (2003). 'Resource Letter: LBOT-1: Laser-based optical tweezers.' Am J Phys 71(3): 201-215. Lang, M. J., P. M. Fordyce, et al. (2004). 'Simultaneous, coincident optical trapping and single-molecule fluorescence.' Nat Methods 1(2): 133-139. Laursen, B. S., H. P. Sorensen, et al. (2005). 'Initiation of protein synthesis in bacteria.' Microbiol Mol Biol Rev 69(1): 101-123. Lee, G. U., L. A. Chrisey, et al. (1994). 'Direct measurement of the forces between complementary strands of DNA.' Science 266(5186): 771-773. Li, P. T., C. Bustamante, et al. (2006). 'Unusual mechanical stability of a minimal RNA kissing complex.' Proc Natl Acad Sci U S A 103(43): 15847-15852. Li, P. T., C. Bustamante, et al. (2007). 'Real-time control of the energy landscape by force directs the folding of RNA molecules.' Proc Natl Acad Sci U S A 104(17): 7039-7044. Li, P. T., D. Collin, et al. (2006). 'Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.' Biophys J 90(1): 250-260. Li, P. T. and I. Tinoco, Jr. (2009). 'Mechanical unfolding of two DIS RNA kissing complexes from HIV-1.' J Mol Biol 386(5): 1343-1356. Liphardt, J., S. Dumont, et al. (2002). 'Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality.' Science 296(5574): 1832-1835. Liphardt, J., S. Napthine, et al. (1999). 'Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting.' J Mol Biol 288(3): 321-335. Liphardt, J., B. Onoa, et al. (2001). 'Reversible unfolding of single RNA molecules by mechanical force.' Science 292(5517): 733-737. Luo, G., M. Wang, et al. (2007). 'Single-molecule and ensemble fluorescence assays for a functionally important conformational change in T7 DNA polymerase.' Proc Natl Acad Sci U S A 104(31): 12610-12615. Maitra, U., E. A. Stringer, et al. (1982). 'Initiation factors in protein biosynthesis.' Annu Rev Biochem 51: 869-900. Mammen, M., K. Helmerson, et al. (1996). 'Optically controlled collisions of biological objects to evaluate potent polyvalent inhibitors of virus-cell adhesion.' Chem Biol 3(9): 757-763. Mangeol, P., T. Bizebard, et al. (2011). 'Probing ribosomal protein-RNA interactions with an external force.' Proc Natl Acad Sci U S A 108(45): 18272-18276. Mao, H., J. R. Arias-Gonzalez, et al. (2005). 'Temperature control methods in a laser tweezers system.' Biophys J 89(2): 1308-1316. Marzi, S., A. G. Myasnikov, et al. (2007). 'Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.' Cell 130(6): 1019-1031. Mikhailenko, S. V., Y. Oguchi, et al. (2010). 'Insights into the mechanisms of myosin and kinesin molecular motors from the single-molecule unbinding force measurements.' J R Soc Interface 7 Suppl 3: S295-306. Namy, O., S. J. Moran, et al. (2006). 'A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.' Nature 441(7090): 244-247. Neuman, B. W., D. A. Stein, et al. (2004). 'Antisense morpholino-oligomers directed against the 5' end of the genome inhibit coronavirus proliferation and growth.' J Virol 78(11): 5891-5899. Neupane, K., H. Yu, et al. (2011). 'Single-molecule force spectroscopy of the add adenine riboswitch relates folding to regulatory mechanism.' Nucleic Acids Res 39(17): 7677-7687. Nierhaus, K. H. (1991). 'The assembly of prokaryotic ribosomes.' Biochimie 73(6): 739-755. Ogata, K. and H. Nohara (1957). 'The possible role of the ribonucleic acid (RNA) of the pH 5 enzyme in amino acid activation.' Biochim Biophys Acta 25(3): 659-660. Onoa, B., S. Dumont, et al. (2003). 'Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme.' Science 299(5614): 1892-1895. Park, J. H., H. E. Johansson, et al. (2012). 'Post-translational modification by beta-lysylation is required for activity of Escherichia coli elongation factor P (EF-P).' J Biol Chem 287(4): 2579-2590. Peterman, E. J., F. Gittes, et al. (2003). 'Laser-induced heating in optical traps.' Biophys J 84(2 Pt 1): 1308-1316. Philippe, C., F. Eyermann, et al. (1993). 'Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site.' Proc Natl Acad Sci U S A 90(10): 4394-4398. Philippe, C., C. Portier, et al. (1990). 'Target site of Escherichia coli ribosomal protein S15 on its messenger RNA. Conformation and interaction with the protein.' J Mol Biol 211(2): 415-426. Portier, C., L. Dondon, et al. (1990). 'Translational autocontrol of the Escherichia coli ribosomal protein S15.' J Mol Biol 211(2): 407-414. Rief, M., H. Clausen-Schaumann, et al. (1999). 'Sequence-dependent mechanics of single DNA molecules.' Nat Struct Biol 6(4): 346-349. Rief, M., F. Oesterhelt, et al. (1997). 'Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy.' Science 275(5304): 1295-1297. Rittie, L. and B. Perbal (2008). 'Enzymes used in molecular biology: a useful guide.' J Cell Commun Signal 2(1-2): 25-45. Salim, N., R. Lamichhane, et al. (2012). 'Thermodynamic and kinetic analysis of an RNA kissing interaction and its resolution into an extended duplex.' Biophys J 102(5): 1097-1107. Schuwirth, B. S., M. A. Borovinskaya, et al. (2005). 'Structures of the bacterial ribosome at 3.5 A resolution.' Science 310(5749): 827-834. Selmer, M., C. M. Dunham, et al. (2006). 'Structure of the 70S ribosome complexed with mRNA and tRNA.' Science 313(5795): 1935-1942. Serganov, A., A. Polonskaia, et al. (2003). 'Ribosomal protein S15 represses its own translation via adaptation of an rRNA-like fold within its mRNA.' EMBO J 22(8): 1898-1908. Shajani, Z., M. T. Sykes, et al. (2011). 'Assembly of bacterial ribosomes.' Annu Rev Biochem 80: 501-526. Sheetz, M. P. (1998). 'Laser tweezers in cell biology. Introduction.' Methods Cell Biol 55: xi-xii. Shine, J. and L. Dalgarno (1974). 'The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.' Proc Natl Acad Sci U S A 71(4): 1342-1346. Smith, D. E., S. J. Tans, et al. (2001). 'The bacteriophage straight phi29 portal motor can package DNA against a large internal force.' Nature 413(6857): 748-752. Smith, S. B., Y. Cui, et al. (2003). 'Optical-trap force transducer that operates by direct measurement of light momentum.' Methods Enzymol 361: 134-162. Soto, A. M., V. Misra, et al. (2007). 'Tertiary structure of an RNA pseudoknot is stabilized by 'diffuse' Mg2+ ions.' Biochemistry 46(11): 2973-2983. Stern, S., T. Powers, et al. (1989). 'RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA.' Science 244(4906): 783-790. Stone, M. D., M. Mihalusova, et al. (2007). 'Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein.' Nature 446(7134): 458-461. Strick, T., J. Allemand, et al. (2000). 'Twisting and stretching single DNA molecules.' Prog Biophys Mol Biol 74(1-2): 115-140. Strick, T. R., J. F. Allemand, et al. (1996). 'The elasticity of a single supercoiled DNA molecule.' Science 271(5257): 1835-1837. Strick, T. R., V. Croquette, et al. (2000). 'Single-molecule analysis of DNA uncoiling by a type II topoisomerase.' Nature 404(6780): 901-904. Svoboda, K. and S. M. Block (1994). 'Force and velocity measured for single kinesin molecules.' Cell 77(5): 773-784. Svoboda, K., C. F. Schmidt, et al. (1993). 'Direct observation of kinesin stepping by optical trapping interferometry.' Nature 365(6448): 721-727. Veigel, C. and C. F. Schmidt (2011). 'Moving into the cell: single-molecule studies of molecular motors in complex environments.' Nat Rev Mol Cell Biol 12(3): 163-176. Warner, J. R., P. M. Knopf, et al. (1963). 'A multiple ribosomal structure in protein synthesis.' Proc Natl Acad Sci U S A 49: 122-129. Wen, J. D., L. Lancaster, et al. (2008). 'Following translation by single ribosomes one codon at a time.' Nature 452(7187): 598-603. Wen, J. D., M. Manosas, et al. (2007). 'Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results.' Biophys J 92(9): 2996-3009. Wimberly, B. T., D. E. Brodersen, et al. (2000). 'Structure of the 30S ribosomal subunit.' Nature 407(6802): 327-339. Yang, A. H., S. D. Moore, et al. (2009). 'Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.' Nature 457(7225): 71-75. Yusupov, M. M., G. Z. Yusupova, et al. (2001). 'Crystal structure of the ribosome at 5.5 A resolution.' Science 292(5518): 883-896. Zamecnik, P. C., E. B. Keller, et al. (1956). 'Mechanism of incorporation of labeled amino acids into protein.' J Cell Physiol Suppl 47(Suppl 1): 81-101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65011 | - |
| dc.description.abstract | 在細胞中,轉譯(translation)的過程是受到高度調控的。我們在此將焦點放在大腸桿菌(Escherichia coli)rpsO基因所轉譯的核醣體蛋白 S15(ecS15)上。核醣體蛋白 S15可以結合到自身的信使核醣核酸(mRNA)上5’端未轉譯區,並且在核醣體蛋白 S15過剩時抑制其轉譯的進行;此結合而抑制的效果發生在信使核醣核酸的這段摺疊成假結(pseudoknot)結構的區域,然而這段區域也可以摺疊成雙髮夾(double-hairpin)的結構。再者,SD序列(Shine-Dalgarno sequence)只會暴露在假結的構形上並允許核醣體結合且解開此構造來起始轉譯。當核醣體蛋白 S15表現過量時,它可以結合至假結的結構導致核醣體被困在前起始階段。
rpsO信使核醣核酸上5’端未轉譯區所形成的結構在過去研究已甚了解,但雙髮夾的形成角色並不知道。為了了解這段5’端未轉譯區結構上和動力學上的特性,我們利用光鉗(optical tweezers)解開此核醣核酸片段。這個技術讓我們可以觀察到單一核醣核酸分子的構形改變(conformational change)。我們發現雙髮夾的形成可以促使其重組成假結結構,儘管假結的摺疊也可以不經由雙髮夾的結構。此外,我們還發現其他的結構產生,他們在光鉗上所表現出來的特性和假結類似。從我們實驗的結果推論雙髮夾結構在摺疊過程中是一種中間物,需要其他因子或蛋白來協助假結的正確構成。 | zh_TW |
| dc.description.abstract | Translation is a highly regulated process in the cell. Here, we have focused on the translational regulation of Escherichia coli ribosomal protein S15 (ecS15), which is encoded by the rpsO gene. The ecS15 can bind to the 5’ untranslated region (5’-UTR) of its own mRNA and repress its translation when the ecS15 is in excess; the binding repression occurs when this region of the mRNA folds into a unique pseudoknot structure, as opposed to an alternative double-hairpin structure. However, the Shine-Dalgarno (SD) sequence is only exposed on the pseudoknot form to allow the ribosome binding and melting this structure for the initiation of translation. When ecS15 is over expressed, it binds to the pseudoknot and leads to the ribosome trapped in the pre-initiation state.
The 5’-UTR of the rpsO mRNA has been studied for alternative structure formation in the past, but the role of the double-hairpin structure is unknown. To characterize these structural and dynamic aspects, we used optical tweezers to unfold the 5’-UTR of the rpsO mRNA. This technique allows us to observe the conformational change of a single RNA molecule. We find that formation of the pseudoknot can be promoted from rearrangement of the double-hairpin structure. In addition, we also observed some other structures of which the full unfolding distance is similar to that of the pseudoknot. From our results, we suggest that the double-hairpin may be an intermediate on the folding pathway to the pseudoknot, and other factors or proteins are required to promote correct formation of the pseudoknot structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:15:05Z (GMT). No. of bitstreams: 1 ntu-101-R99b43018-1.pdf: 1353305 bytes, checksum: 279f475b0d413a126b8ff3cd0eafcbff (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
摘要............................................................................................................................i Abstract…………………………………………………………………………….ii Contents…………………………………………………………………………… iii List of Tables……………………………………………………………………… vi List of Figures………………..………………………………………………........ vii Chapter 1 – Introduction………………………………………………………… 1 1.1 Translation…………………………………………………………………… 1 1.1.1 The Ribosome and Ribosomal Protein S15…………………………….. 1 1.1.2 Translational regulation of Ribosomal Protein S15…………………….. 2 1.1.3 Rearrangement of RNA Structures……………………………………... 2 1.2 Single-Molecule Techniques………………………………………………… 3 1.2.1 Applications of Single-Molecule Force Spectroscopy Techniques…….. 3 1.2.2 Measurements of RNA Folding and Unfolding by Optical Tweezers….. 6 Chapter 2 – Materials and Methods……………………………………………. 7 2.1 Materials…………………………………………………………………….. 7 2.1.1 Bacterial Strains………………………………………………………... 7 2.1.2 Plasmid Vectors………………………………………………………… 7 2.1.3 Oligomers and Primers…………………………………………………. 7 2.1.4 Enzymes……………………………………………………………….. 10 2.1.5 Chemicals……………………………………………………………… 11 2.1.6 Kits…………………………………………………………………….. 12 2.1.7 Buffers…………………………………………………………………. 13 2.2 Methods…………………………………………………………………….. 13 2.2.1 Plasmid Construction………………………………………………….. 13 2.2.2 In-vitro Transcription…………………………………………………... 14 2.2.3 PCR for DNA Handles…………………………………………………. 14 2.2.4 5’-Handles Modification………………………………………………. 14 2.2.5 Annealing of Handles to RNA…………………………………………. 15 2.2.6 Pulling Test by Optical Tweezers………………………………………. 15 Chapter 3 – Results……………………………………………………………… 17 3.1 Purification of RNA transcripts and DNA Handles………………………… 17 3.2 S15WT RNA Pseudoknot Is Stabilized by Mg2+ Ions……………………. 17 3.3 Force-Extension Patterns of S15WT in 20 mM Mg2+…………………….. 18 3.3.1 Hairpin Structures Can Be Rearranged to Pseudoknots at Low Forces.. 19 3.4 Further Characterization of the Double-hairpin and Pseudoknot Structures.. 19 3.4.1 S15mPK……………………………………………………………….. 19 3.4.2 S15mHP……………………………………………………………….. 20 3.5 Characterization of the 2T and 2CT Unfolding patterns…………………… 20 3.5.1 S15mP/G………………………………………………………………. 21 3.5.2 S15mH/G………………………………………………………………. 22 3.6 Refolding Measurements of S15WT and the mutants……………………… 22 Chapter 4 – Discussions………………………………………………………… 23 4.1 Mg2+ Ion Effects on Tertiary Structures…………...……………………….. 23 4.2 Formation of the Stem 2 Can Promote Rearrangement for Pseudoknot…… 23 4.3 Tertiary Structure Folding for Other Transition Patterns…………………… 24 4.4 Interaction with the S15 protein……….…………………………………… 26 References………………………………………………………………………… 27 List of Tables Table 1 The characteristics of the unfolding transitions of the S15WT……………...36 Table 2 Average unfolding forces of different patterns for the five RNA constructs in 20 mM MgCl2………………………………………………………………..37 Table 3 Average extension values of different patterns for the five RNA constructs in 20 mM MgCl2………………………………………………………………..38 Table 4 The population of the unfolding transitions for the four RNA constructs in 20 mM MgCl2………………………………………………………………..39 Table 5 The characteristics of the refolding transitions of the S15WT………………40 List of Figures Figure 1 Schematic diagrams for single-molecule optical tweezers experiments…...41 Figure 2 The S15WT RNA construct ………………………………….……………42 Figure 3 The S15mPK and S15mHP mutants……………………………………….43 Figure 4 The S15mP/G and S15mH/G mutants……………………………………..44 Figure 5 Design of DNA handles……………………………………………………45 Figure 6 Purification of all RNAs……………………………………………………46 Figure 7 PCR for DNA handles……………………………………………………...47 Figure 8 Force-extension curves of the S15WT……………………………………..48 Figure 9 Force-extension patterns of S15WT in 20 mM MgCl2….………………....49 Figure 10 Distribution of the first unfolding force for S15WT……………………...50 Figure 11 Population of the four types of unfolding patterns in S15WT……………51 Figure 12 Force-extension patterns of S15mPK in 20 mM MgCl2………………….52 Figure 13 Distribution of the first unfolding force for S15mPK…………………….53 Figure 14 The PK unfolding transition processed at different rates…………………54 Figure 15 Force-extension patterns of S15mP/G in 20 mM MgCl2…………………55 Figure 16 The force-extension unfolding curves of the S15mH/G………………….56 Figure 17 The refolding curves of the five RNA constructs…………………………57 Figure 18 Folding and unfolding of the transition patterns………………...………..58 Figure 19 The model for the unfolding pathway ……………………………………59 Figure 20 Predicted secondary structure by Mfold for S15mPK and S15mP/G…….60 | |
| dc.language.iso | en | |
| dc.subject | 轉譯調控 | zh_TW |
| dc.subject | rpsO 信使核醣核酸 | zh_TW |
| dc.subject | 結構重組 | zh_TW |
| dc.subject | 單分子 | zh_TW |
| dc.subject | 光鉗 | zh_TW |
| dc.subject | optical tweezers | en |
| dc.subject | translational regulation | en |
| dc.subject | rpsO mRNA | en |
| dc.subject | structural rearrangement | en |
| dc.subject | single-molecule | en |
| dc.title | 以單分子研究 rpsO 基因 5’端未轉譯區的 RNA 結構重組 | zh_TW |
| dc.title | Single-Molecule Study of Structural Rearrangement of the rpsO 5’-UTR mRNA | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張功耀,范秀芳 | |
| dc.subject.keyword | 轉譯調控,rpsO 信使核醣核酸,結構重組,單分子,光鉗, | zh_TW |
| dc.subject.keyword | translational regulation,rpsO mRNA,structural rearrangement,single-molecule,optical tweezers, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
