Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65009
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林軒田(Hsuan-Tien Lin)
dc.contributor.authorPo-Lung Chenen
dc.contributor.author陳柏龍zh_TW
dc.date.accessioned2021-06-16T23:14:53Z-
dc.date.available2017-08-03
dc.date.copyright2012-08-03
dc.date.issued2012
dc.date.submitted2012-08-03
dc.identifier.citationN. Abe, B. Zadrozny, and J. Langford. An iterative method for multi-class cost-sensitive
learning. In Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2004.
Brigham Anderson and Andrew Moore. Active learning for hidden markov models: objective
functions and algorithms. In Proceedings of the 22nd international conference
on Machine learning, 2005.
L. Breiman. Random forests. Machine Learning, 2001.
C. C. Chang and C. J. Lin. LIBSVM: a library for support vector machines, 2001.
C. Cortes and V. Vapnik. Support-vector networks. Machine Learnning, 1995.
Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active learning. In Proceedings
of the 25th international conference on Machine learning, 2008.
P. Domingos. MetaCost: A General Method for Making Classifiers Cost-Sensitive. In
Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery
and data mining, 1999.
C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the 17th international
joint conference on Artificial intelligence - Volume 2, 2001.
R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. LIBLINEAR: A Library
for Large Linear Classification. Journal of Machine Learning Research, 2008.
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.Witten. The WEKA
data mining software: an update. SIGKDD Explorations, 2009.
S. J. Huang, R. J., and Z. H. Zhou. Active learning by querying informative and representative
examples. In Advances in Neural Information Processing Systems 23, 2010.
T. K. Huang, R. C. Weng, and C. J. Lin. Generalized Bradley-Terry Models and Multi-
Class Probability Estimates. Journal of Machine Learning Research, 2006.
P. Jain and A. Kapoor. Active learning for large multi-class problems. IEEE Conference
on Computer Vision and Pattern Recognition, 2009.
A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for image
classification. IEEE Conference on Computer Vision and Pattern Recognition, 2009.
T. Luo, K. Kramer, D. B. Goldgof, L. O. Hall, S. Samson, A. Remsen, and T. Hopkins.
Active Learning to Recognize Multiple Types of Plankton. Journal of Machine Learning
Research, 2005.
H. T. Nguyen and A. Smeulders. Active learning using pre-clustering. In Proceedings of
the twenty-first international conference on Machine learning, 2004.
J. C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized
Likelihood Methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS,
1999.
B. Settles. Active Learning Literature Survey. Technical report, University ofWisconsin–
Madison, 2009.
Simon Tong and Daphne Koller. Support vector machine active learning with applications
to text classification. Journal of Machine Learning Research, 2002.
H. H. Tu and H.T. Lin. One-sided support vector regression for multiclass cost-sensitive
classification. In Proceedings of the 27th International Conference on Machine Learning,
2010.
A. Vlachos. A stopping criterion for active learning. Computer Speech & Language,
2008.
R. Yan and A. Hauptmann. Multi-class active learning for video semantic feature extraction.
In IEEE International Conference on Multimedia and Expo, 2004.
R. Yan, J. Yang, and A. Hauptmann. Automatically Labeling Video Data Using Multiclass
Active Learning. In Proceedings of the Ninth IEEE International Conference on
Computer Vision, 2003.
X. Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon University,
2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65009-
dc.description.abstract如何對成本導向(cost-sensitive)的多重分類法(multiclass classification)做主動學習(active learning)是一個相對較新的研究方向。對於這個問題,我們在這份論文中提出兩種專注於成本導向的主動學習策略:
最大預期成本(maximum expected cost)以及最小成本差距(cost-weighted
minimum margin)。這兩種策略皆可以被視為是現存非成本導向(costinsensitive)策略的延伸。實驗結果顯示,在成本導向的環境下成本導
向的策略表現相當理想, 性能明顯超越非成本導向的策略。實驗結果中也反映出學習資料的難易度會若干影響成本導向主動學習演算法的表現。因此在實際的主動學習的應用中,根據分析資料特性來選擇主動學習的策略是較理想的做法。
zh_TW
dc.description.abstractMulticlass cost-sensitive active learning is a relatively new problem. In this thesis, we derive the maximum expected cost and cost-weighted minimum margin strategy for multiclass cost-sensitive active learning. These two strategies can be seem as the extended version of classical cost-insensitive active learning strategies. The experimental results demonstrate that the derived strategies are promising for cost-sensitive active learning. In particular, the cost-sensitive strategies outperform cost-insensitive ones on many benchmark data sets. The results also reveal how the hardness of data affects the performance of active learning strategies. Thus, in practical active learning applications, data analysis before strategy selection can be important.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:14:53Z (GMT). No. of bitstreams: 1
ntu-101-R99922038-1.pdf: 1911477 bytes, checksum: b0918b658da71e5e8c9122378ac6bbc7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝i
中文摘要iii
Abstract v
1 Introduction 1
2 Problem setup 5
2.1 Multiclass active learning . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Pool-based setup . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Cost-sensitive active learning . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Multiclass cost-sensitive classifier . . . . . . . . . . . . . . . . . 7
3 Existing active learning strategies 9
3.1 Binary active learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Multiclass active learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Minimum confidence . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Minimum margin . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . 13
4 Strategies for cost-sensitive active learning 15
4.1 Strategy: maximum expected cost . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.2 Maximum expected cost reduction . . . . . . . . . . . . . . . . . 16
4.1.3 Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Relationship between minimum confidence and maximum expected
cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Strategy: cost-weighted minimum margin . . . . . . . . . . . . . . . . . 18
5 Experiments 19
5.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Comparison of strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Comparison of strategies on artificial datasets . . . . . . . . . . . . . . . 25
5.4 The effects from data characteristics . . . . . . . . . . . . . . . . . . . . 27
6 Conclusion 31
Bibliography 33
A Extended cost-sensitive strategies related to maximum entropy 37
dc.language.isoen
dc.subject電腦科學zh_TW
dc.subject機器學習zh_TW
dc.subject多重分類zh_TW
dc.subject成本導向zh_TW
dc.subject主動學習演算法zh_TW
dc.subjectCost-sensitiveen
dc.subjectMachine Learningen
dc.subjectComputer Scienceen
dc.subjectMulti-class Classificationen
dc.subjectActive Learningen
dc.title使用機率模型實行成本導向多重分類的主動學習演算法zh_TW
dc.titleActive Learning for Multiclass Cost-sensitive Classification Using Probabilistic Modelsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林守德(Shou-De Lin),李育杰(Yuh-Jye Lee)
dc.subject.keyword電腦科學,機器學習,多重分類,成本導向,主動學習演算法,zh_TW
dc.subject.keywordComputer Science,Machine Learning,Multi-class Classification,Cost-sensitive,Active Learning,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2012-08-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved