請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65002完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐振哲 | |
| dc.contributor.author | Hsin-Chieh Li | en |
| dc.contributor.author | 李欣潔 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:14:26Z | - |
| dc.date.available | 2017-08-15 | |
| dc.date.copyright | 2012-08-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-08-01 | |
| dc.identifier.citation | 1.S. A. Studenikin, N. Golego and M. Cocivera, ' Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis ', J. Appl. Phys., 84 (4), 2287-2294 (1998).
2.K. H. Yoon and J. Y. Cho, ' Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique ', Mater. Res. Bull., 35 (1), 39-46 (2000). 3.Y. S. Kim, W. P. Tai and S. J. Shu, ' Effect of preheating temperature on structural and optical properties of ZnO thin films by sol-gel process ', Thin Solid Films, 491 (1-2), 153-160 (2005). 4.J. Tauc, ' Optical properties and electronic structure of amorphous Ge and Si ', Mater. Res. Bull., 3 (1), 37-46 (1968). 5.T. V. Vimalkumar, N. Poornima, C. S. Kartha and K. P. Vijayakumar, ' Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films ', Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., 175 (1), 29-35 (2010). 6.J. H. Lee, B. W. Yeo and B. O. Park, ' Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis ', Thin Solid Films, 457 (2), 333-337 (2004). 7.R. Ayouchi, F. Martin, D. Leinen and J. R. Ramos-Barrado, ' Growth of pure ZnO thin films prepared by chemical spray pyrolysis on silicon ', J. Cryst. Growth, 247 (3-4), 497-504 (2003). 8.J. Aranovich, A. Ortiz and R. H. Bube, ' Optical and electrical properties of ZnO films prepared by spray pyrolysis for solar cell applications ', Journal of Vacuum Science & Technology, 16 (4), 994-1003 (1979). 9.S. A. Studenikin, N. Golego and M. Cocivera, ' Optical and electrical properties of undoped ZnO films grown by spray pyrolysis of zinc nitrate solution ', J. Appl. Phys., 83 (4), 2104-2111 (1998). 10.B. J. Lokhande and M. D. Uplane, ' Structural, optical and electrical studies on spray deposited highly oriented ZnO films ', Appl. Surf. Sci., 167 (3-4), 243-246 (2000). 11.B. J. Lokhande, P. S. Patil and M. D. Uplane, ' Deposition of highly oriented ZnO films by spray pyrolysis and their structural, optical and electrical characterization ', Mater. Lett., 57 (3), 573-579 (2002). 12.Y. Lee, H. Kim and Y. Roh, ' Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique ', Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap., 40 (4A), 2423-2428 (2001). 13.D. H. Bao, H. S. Gu and A. X. Kuang, ' Sol-gel-derived c-axis oriented ZnO thin films ', Thin Solid Films, 312 (1-2), 37-39 (1998). 14.J. H. Lee, K. H. Ko and B. O. Park, ' Electrical and optical properties of ZnO transparent conducting films by the sol-gel method ', J. Cryst. Growth, 247 (1-2), 119-125 (2003). 15.Y. Natsume and H. Sakata, ' Zinc oxide films prepared by sol-gel spin-coating ', Thin Solid Films, 372 (1-2), 30-36 (2000). 16.W. Water and S. Y. Chu, ' Physical and structural properties of ZnO sputtered films ', Mater. Lett., 55 (1-2), 67-72 (2002). 17.G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer and R. T. Williams, ' Control of p- and n-type conductivity in sputter deposition of undoped ZnO ', Appl. Phys. Lett., 80 (7), 1195-1197 (2002). 18.K. B. Sundaram and A. Khan, ' Characterization and optimization of zinc oxide films by rf magnetron sputtering ', Thin Solid Films, 295 (1-2), 87-91 (1997). 19.M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis and G. Kiriakidis, ' ZnO transparent thin films for gas sensor applications ', Thin Solid Films, 515 (2), 551-554 (2006). 20.K. H. Yoon, J. W. Choi and D. H. Lee, ' Characteristics of ZnO thin films deposited onto Al/Si substrates by rf magnetron sputtering ', Thin Solid Films, 302 (1-2), 116-121 (1997). 21.K. M. Chang, S. H. Huang, C. J. Wu, W. L. Lin, W. C. Chen, C. W. Chi, J. W. Lin and C. C. Chang, ' Transparent conductive indium-doped zinc oxide films prepared by atmospheric pressure plasma jet ', Thin Solid Films, 519 (15), 5114-5117 (2011). 22.F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade and M. Miki-Yoshida, ' Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis ', Thin Solid Films, 350 (1-2), 192-202 (1999). 23.P. S. Patil, ' Versatility of chemical spray pyrolysis technique ', Mater. Chem. Phys., 59 (3), 185-198 (1999). 24.M. Krunks and E. Mellikov, ' Zinc oxide thin films by the spray pyrolysis method ', Thin Solid Films, 270 (1-2), 33-36 (1995). 25.M. Ohyama, H. Kozuka and T. Yoko, ' Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution ', Thin Solid Films, 306 (1), 78-85 (1997). 26.M. N. Kamalasanan and S. Chandra, ' Sol-gel synthesis of ZnO thin films ', Thin Solid Films, 288 (1-2), 112-115 (1996). 27.R. Ghosh, D. Basak and S. Fujihara, ' Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films ', J. Appl. Phys., 96 (5), 2689-2692 (2004). 28.J. C. Viguie and J. Spitz, ' Chemical Vapor Deposition at Low Temperatures ', J. Electrochem. Soc., 122 (4), 585-588 (1975). 29.S. C. Jung and N. Imaishi, ' ZnO thin films growth by APCVD using zinc acetate ', Kag. Kog. Ronbunshu, 21 (1), 143-151 (1995). 30.D. Perednis and L. J. Gauckler, ' Thin film deposition using spray pyrolysis ', J. Electroceram., 14 (2), 103-111 (2005). 31.Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi and H. Watanabe, ' Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method ', J. Cryst. Growth, 221, 431-434 (2000). 32.M. Chichina, M. Tichy, P. Kudrna, A. Grinevich, O. Churpita, Z. Hubicka, S. Kment and J. Olejnicek, ' A study of barrier-torch plasma jet system at atmospheric pressure ', Czech. J. Phys., 56, B1212-B1217 (2006). 33.Y. Suzaki, S. Ejima, T. Shikama, S. Azuma, O. Tanaka, T. Kajitani and H. Koinuma, ' Deposition of ZnO film using an open-air cold plasma generator ', Thin Solid Films, 506, 155-158 (2006). 34.Y. W. Hsu, H. C. Li, Y. J. Yang and C. C. Hsu, ' Deposition of zinc oxide thin films by an atmospheric pressure plasma jet ', Thin Solid Films, 519 (10), 3095-3099 (2011). 35.A. Gurav, T. Kodas, T. Pluym and Y. Xiong, ' Aerosol processing of materials ', Aerosol Sci. Technol., 19 (4), 411-452 (1993). 36.W. X. Zhang and K. Yanagisawa, ' Hydrothermal synthesis of zinc hydroxide chloride sheets and their conversion to ZnO ', Chem. Mat., 19 (9), 2329-2334 (2007). 37.H. W. Kim and N. H. Kim, ' Annealing effect for structural morphology of ZnO film on SiO2 substrates ', Mater. Sci. Semicond. Process, 7 (1-2), 1-6 (2004). 38.J. D. Ye, S. L. Gu, S. M. Zhu, T. Chen, L. Q. Hu, F. Qin, R. Zhang, Y. Shi and Y. D. Zheng, ' The growth and annealing of single crystalline ZnO films by low-pressure MOCVD ', J. Cryst. Growth, 243 (1), 151-156 (2002). 39.N. Fujimura, T. Nishihara, S. Goto, J. F. Xu and T. Ito, ' Control of preferred orientation for ZnOx films : control of self-texture ', J. Cryst. Growth, 130 (1-2), 269-279 (1993). 40.H. Mondragon-Suarez, A. Maldonado, M. D. L. Olvera, A. Reyes, R. Castanedo-Perez, G. Torres-Delgado and R. Asomoza, ' ZnO : Al thin films obtained by chemical spray: effect of the Al concentration ', Appl. Surf. Sci., 193 (1-4), 52-59 (2002). 41.T. Y. Ma and S. C. Lee, ' Effects of aluminum content and substrate temperature on the structural and electrical properties of aluminum-doped ZnO films prepared by ultrasonic spray pyrolysis ', J. Mater. Sci.-Mater. Electron., 11 (4), 305-309 (2000). 42.S. M. Rozati and S. Akesteh, ' Characterization of ZnO : Al thin films obtained by spray pyrolysis technique ', Mater. Charact., 58 (4), 319-322 (2007). 43.S. Major, A. Banerjee and K. L. Chopra, ' Highly transparent and conducting indium-doped zinc-oxide films by spray pyrolysis ', Thin Solid Films, 108 (3), 333-340 (1983). 44.P. M. R. Kumar, C. S. Kartha, K. P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh and D. K. Avasthi, ' On the properties of indium doped ZnO thin films ', Semicond. Sci. Technol., 20 (2), 120-126 (2005). 45.C. H. Lee, K. S. Lim and J. S. Song, ' Highly textured ZnO thin films doped with indium prepared by the pyrosol method ', Sol. Energy Mater. Sol. Cells, 43 (1), 37-45 (1996). 46.P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho and R. Martins, ' Performances presented by zinc oxide thin films deposited by spray pyrolysis ', Thin Solid Films, 337 (1-2), 176-179 (1999). 47.J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu and C. Y. Zhang, ' Growth of nitrogen-doped p-type ZnO films by spray pyrolysis and their electrical and optical properties ', J. Cryst. Growth, 280 (3-4), 495-501 (2005). 48.Y. Zhao, Z. Li, Z. Y. Lv, X. Y. Liang, J. H. Min, L. J. Wang and Y. Shi, ' A new phase and optical properties of the N-doped ZnO film ', Mater. Res. Bull., 45 (9), 1046-1050 (2010). 49.S. Golshahi, S. M. Rozati, R. Martins and E. Fortunato, ' P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration ', Thin Solid Films, 518 (4), 1149-1152 (2009). 50.B. Z. Dong, H. Hu, G. J. Fang, X. Z. Zhao, D. Y. Zheng and Y. P. Sun, ' Comprehensive investigation of structural, electrical, and optical properties for ZnO : Al films deposited at different substrate temperature and oxygen ambient ', J. Appl. Phys., 103 (7)(2008). 51.Y. W. Hsu, Y. J. Yang, C. Y. Wu and C. C. Hsu, ' Downstream Characterization of an Atmospheric Pressure Pulsed Arc Jet ', Plasma Chem. Plasma Process., 30 (3), 363-372 (2010). 52.N. Tabet, M. Faiz and A. Al-Oteibi, ' XPS study of nitrogen-implanted ZnO thin films obtained by DC-Magnetron reactive plasma ', J. Electron Spectrosc. Relat. Phenom., 163 (1-3), 15-18 (2008). 53.Y. T. Zhang, G. T. Du, X. Q. Wang, W. C. Li, X. T. Yang, Y. Ma, B. J. Zhao, H. J. Yang, D. L. Liu and S. R. Yang, ' X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition ', J. Cryst. Growth, 252 (1-3), 180-183 (2003). 54.S. S. Shinde and K. Y. Rajpure, ' Fabrication and performance of N-doped ZnO UV photoconductive detector ', J. Alloy. Compd., 522, 118-122 (2012). 55.C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher and T. J. Coutts, ' Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy ', J. Appl. Phys., 97 (3)(2005). 56.P. F. Smet, A. B. Parmentier and D. Poelman, ' Selecting Conversion Phosphors for White Light-Emitting Diodes ', J. Electrochem. Soc., 158 (6), R37-R54 (2011). 57.U. Kaufmann, M. Kunzer, K. Kohler, H. Obloh, W. Pletschen, P. Schlotter, J. Wagner, A. Ellens, W. Rossner and M. Kobusch, ' Single chip white LEDs ', Phys. Status Solidi A-Appl. Res., 192 (2), 246-253 (2002). 58.A. Beltran, J. Andres, J. A. Igualada and J. Carda, ' Garnet Crystal Stuctures. An ab Initio Perturbed Ion Study ', J. Phys. Chem., 99 (17), 6493-6501 (1995). 59.M. Medraj, R. Hammond, M. A. Parvez, R. A. L. Drew and W. T. Thompson, ' High temperature neutron diffraction study of the Al2O3-Y2O3 system ', J. European Ceram. Soc., 26 (16), 3515-3524 (2006). 60.Y. H. Zhou, J. Lin, M. Yu, S. B. Wang and H. J. Zhang, ' Synthesis-dependent luminescence properties of Y3Al5O12 : Re3+ (Re=Ce, Sm, Tb) phosphors ', Mater. Lett., 56 (5), 628-636 (2002). 61.H. Z. Wang, L. Gao and K. Niihara, ' Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method ', Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 288 (1), 1-4 (2000). 62.J. G. Li, T. Ikegami, J. H. Lee, T. Mori and Y. Yajima, ' Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant ', J. European Ceram. Soc., 20 (14-15), 2395-2405 (2000). 63.X. H. Yan, S. S. Zheng, R. M. Yu, J. Cai, Z. W. Xu, C. J. Liu and X. T. Luo, ' Preparation of YAG : Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties ', Trans. Nonferrous Met. Soc. China, 18 (3), 648-653 (2008). 64.M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer and V. Huch, ' Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods ', J. Mater. Chem., 9 (12), 3069-3079 (1999). 65.F. X. Qi, H. B. Wang and X. Z. Zhu, ' Spherical YAG : Ce3+ phosphor particles prepared by spray pyrolysis ', J. Rare Earths, 23 (4), 397-400 (2005). 66.L. Mancic, G. del Rosario, Z. Marinkovic and O. Milosevic, in Recent Developments in Advanced Materials and Processes, edited by D. P. Uskokovic, S. K. Milonjic and D. I. Rakovic, Trans Tech Publications Ltd, Zurich-Uetikon, 2006, Vol. 518, pp. 107-112. 67.Y. H. Zhou, J. Lin, M. Yu, S. M. Han, S. B. Wang and H. J. Zhang, ' Morphology control and luminescence properties of YAG : Eu phosphors prepared by spray pyrolysis ', Mater. Res. Bull., 38 (8), 1289-1299 (2003). 68.J. S. Lee, P. Kumar, S. Gupta, M. H. Oh, M. B. Ranade and R. K. Singh, ' Enhanced Luminescence Properties of YAG:Ce3+ Nanophosphor Prepared by Flame Spray Pyrolysis ', J. Electrochem. Soc., 157 (2), K25-K29 (2010). 69.N. Dimov, K. Fukuda, T. Umeno, S. Kugino and M. Yoshio, ' Characterization of carbon-coated silicon - Structural evolution and possible limitations ', J. Power Sources, 114 (1), 88-95 (2003). 70.M. Yoshio, H. Y. Wang, K. Fukuda, T. Umeno, N. Dimov and Z. Ogumi, ' Carbon-coated Si as a lithium-ion battery anode material ', J. Electrochem. Soc., 149 (12), A1598-A1603 (2002). 71.M. Inagaki, Y. Hirose, T. Matsunaga, T. Tsumura and M. Toyoda, ' Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution ', Carbon, 41 (13), 2619-2624 (2003). 72.B. Tryba, A. W. Morawski, T. Tsumura, M. Toyoda and M. Inagaki, ' Hybridization of adsorptivity with photocatalytic activity - carbon-coated anatase ', J. Photochem. Photobiol. A-Chem., 167 (2-3), 127-135 (2004). 73.R. Guo, P. F. Shi, X. Q. Cheng and C. Y. Du, ' Synthesis and characterization of carbon-coated LiNi1/3Co1/3Mn1/3O2 cathode material prepared by polyvinyl alcohol pyrolysis route ', J. Alloy. Compd., 473 (1-2), 53-59 (2009). 74.M. Inagaki, H. Miura and H. Konno, ' A new simple process for carbon coating of ceramic particles using poly(vinyl chloride) ', J. European Ceram. Soc., 18 (8), 1011-1015 (1998). 75.M. Inagaki, Y. Okada, H. Miura and H. Konno, ' Preparation of carbon-coated transition metal particles from mixtures of metal oxide and polyvinylchloride ', Carbon, 37 (2), 329-334 (1999). 76.T. Jiang, W. C. Pan, J. Wang, X. F. Bie, F. Du, Y. J. Wei, C. Z. Wang and G. Chen, ' Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method ', Electrochim. Acta, 55 (12), 3864-3869 (2010). 77.H. G. Jung, J. Kim, B. Scrosati and Y. K. Sun, ' Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries ', J. Power Sources, 196 (18), 7763-7766 (2011). 78.S. H. Ng, J. Wang, D. Wexler, S. Y. Chew and H. K. Liu, ' Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries ', J. Phys. Chem. C, 111 (29), 11131-11138 (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65002 | - |
| dc.description.abstract | 本研究為在常壓下利用直流脈衝式電源產生的噴射式電漿製備氧化鋅透明導電薄膜,本實驗參考噴霧熱解法處理先趨物水溶液之方法,利用1.7 MHz超音波霧化器將氧化鋅水溶液霧化後,再通入載流氣體將此先趨物通入電漿下游反應,本製程結合噴霧熱解法設備便宜與常壓電漿具有高反應性自由基之優點,提供高沉積薄膜速率且可大面積製備氧化鋅薄膜的製程方法。
藉由改變電漿操作條件研究其對本製程之最適化條件,在本製程中發現電漿氣體使用氮氣製備之氧化鋅薄膜導電性比使用氧氣好;隨著電漿的施加電壓增加及氣體流量減少,電漿下游的溫度及反應性隨之增加,且低氣體流量使先驅物滯留時間較長,可使氯化鋅水溶液先形成鹼式氧化鋅再轉化成氧化鋅薄膜,本製程電漿最適化的條件為氮氣電漿在30 slm、275 V下操作,可製備出電阻率為13 Ω cm且在可見光範圍內平均穿透率為80%的氧化鋅透明導電薄膜。 透過研究氧化鋅薄膜可能的成長機制,欲改善氧化鋅薄膜的表面結構與基本性質。研究在不同沉積時間下之氧化鋅薄膜結構,當沉積時間為60秒以上可得到一較連續的薄膜,而當沉積時間為120秒時可得到氧化鋅薄膜下層為柱狀的緻密結構,但薄膜表面具有片狀結構的物質,透過XPS縱深分析發現表面含氯的成份較高,故推論此片狀結構為鹼式氯化鋅;透過氮氣電漿表面處理氧化鋅薄膜可減少表面的片狀結構,且隨著表面處理時間增加,由SEM影像可以觀察到薄膜表面的晶粒變大;利用熱退火處理本實驗製備的氧化鋅薄膜,對氧化鋅薄膜的性質並沒有太大的影響。藉由改變基材至電漿出口的距離與進料位置,發現會影響氧化鋅薄膜的晶粒大小,當進料位置為靠近電漿出口,則溫度較高且成核速率較快,可得到較小的晶粒,而當基材至電漿出口的距離越遠,表示薄膜成長時間較長可得到較大的晶粒。 探討改變反應先驅物的條件對氧化鋅薄膜之影響,隨著先驅物載流氣體流量增加,可通入越多的先趨物水溶液使沉積薄膜的速率增加,但也會使表面片狀結構增加,故當載流氣體流量為500 sccm時可以得到導電性最好的氧化鋅薄膜;也利用摻雜鋁或銦離子欲增加氧化鋅薄膜之導電性,但目前在本製程中此方法對氧化鋅薄膜之導電性並無太大的影響。 | zh_TW |
| dc.description.abstract | Deposition of transparent and conductive ZnO thin films by an atmospheric pressure plasma jet (APPJ) is studied. The APPJ used is sustained by a pulsed power source with a repetitive frequency up to 25 kHz using N2 or O2 as plasma gases. Nebulized zinc chloride solution is used as the precursor and is sprayed into the downstream of the plasma jet to deposit thin films on Si wafers or glass substrates. By using N2 plasmas, lower resistivity can be obtained comparing with those obtained using O2 plasmas. X-ray diffraction spectra show that the crystal structure changes with the operating parameters, namely plasma gas flow rate and the applied voltage, which influence the jet temperature and reactivity. Under an applied voltage of 275 V and a flow rate of 30 slm, dense and smooth films can be deposited. ZnO films with a resistivity of 13 Ω-cm and an average transmittance of 80% between 400 and 800 nm can be obtained.
The growth mechanism of ZnO thin films deposited by the APPJ is proposed. It is found that upon exposure of the precursor to the plasma jet, sheet-like zinc hydroxide chloride (ZHC) are formed first, and is converted to zinc oxide if the jet temperature is high enough. Under relatively low temperature, the conversion of the precursor end at ZHC. The grain size of the films is greatly influenced by the nucleation and growth rate. High jet temperature leads to a larger number of the nuclei and results in smaller grain sizes and denser ZnO thin films. We study the influence of the carrier gas flow rate on the properties of ZnO thin films. The results show that the resistivity is lowest as carrier gas flow rate is 500 sccm. In our work, the effect of the Al or In doping on the electrical properties of ZnO thin films do not improve the conductivity of ZnO thin films. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:14:26Z (GMT). No. of bitstreams: 1 ntu-101-R99524083-1.pdf: 7120176 bytes, checksum: 3d53519a97da6c70661f1c075624d05a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III 英文摘要 V 目錄 VII 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目標 2 1.3 論文總覽 3 第二章 文獻回顧 5 2.1 氧化鋅薄膜的性質 5 2.1.1 光學性質 5 2.1.2 導電性質 6 2.1.3 表面結構 8 2.2 氧化鋅薄膜的製備 12 2.2.1 常見的氧化鋅薄膜製程 12 2.2.2 常壓電漿沉積金屬氧化物 13 2.2.3 薄膜成長機制 16 2.2.4 從鹼式氯化鋅轉化成氧化鋅薄膜 18 2.3 熱退火及摻雜對氧化鋅薄膜之影響 21 2.3.1 熱退火對氧化鋅薄膜之影響 21 2.3.2 鋁及銦摻雜之氧化鋅薄膜 24 2.3.3 氮摻雜之氧化鋅薄膜 29 第三章 實驗設備與架構 33 3.1 實驗設備 33 3.1.1 APPJ系統 33 3.1.2 先驅物系統 36 3.1.3 電漿噴流下游檢測系統 37 3.1.4 熱退火處理 37 3.2 實驗步驟 38 3.2.1 基材準備 38 3.2.2 反應先驅物 39 3.3 檢測分析設備 39 第四章 實驗結果與討論 43 4.1 電漿操作參數對氧化鋅薄膜之影響 43 4.1.1 氮氣電漿與氧氣電漿製程之比較 43 4.1.2 氮氣電漿氣體流量對薄膜製程之影響 49 4.1.3 氮氣電漿施加電壓對薄膜製程之影響 53 4.2 氧化鋅薄膜之成長機制 57 4.2.1 不同沉積時間的氧化鋅薄膜表面結構 57 4.2.2 氧化鋅薄膜之縱深分析 60 4.2.3 氮氣電漿表面處理對氧化鋅薄膜之影響 74 4.2.4 熱退火對氧化鋅薄膜之影響 78 4.2.5 電漿出口至基材距離對薄膜之影響 81 4.2.6 先驅物進料位置對薄膜晶粒大小之影響 85 4.2.7 載流氣體逆流對氧化鋅薄膜之影響 88 4.3 反應先驅物之影響 91 4.3.1 載流氣體流量對氧化鋅薄膜之影響 91 4.3.2 摻雜鋁對氧化鋅薄膜之影響 100 4.3.3 摻雜銦對氧化鋅薄膜之影響 109 第五章 結論與未來展望 113 第六章 參考文獻 115 附錄 125 附錄A 釔鋁石榴石螢光粉的製備 125 A.1 螢光粉在LED上的應用 125 A.2 釔鋁石榴石的基本性質 127 A.3 釔鋁石榴石的製備方法 129 A.4 釔鋁石榴石實驗結果與討論 129 附錄B 鋰錳鎳氧化物碳批覆的製備 134 B.1 碳批覆之應用 134 B.2 碳批覆之製備方法 134 B.3 碳批覆之實驗結果與討論 135 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超音波霧化 | zh_TW |
| dc.subject | 鋁摻雜氧化鋅薄膜 | zh_TW |
| dc.subject | 透明導電薄膜 | zh_TW |
| dc.subject | 氧化鋅薄膜 | zh_TW |
| dc.subject | 常壓噴射式電漿 | zh_TW |
| dc.subject | 噴霧熱解法 | zh_TW |
| dc.subject | nebulizer | en |
| dc.subject | ZnO thin films | en |
| dc.subject | TCO | en |
| dc.subject | aluminium doped ZnO | en |
| dc.subject | spray pyrolysis | en |
| dc.subject | atmospheric pressure plasma jet | en |
| dc.title | 利用常壓噴射式電漿製備氧化鋅透明導電薄膜及其性質之研究 | zh_TW |
| dc.title | Characterization of Transparent Conductive ZnO Thin Films Prepared by an Atmospheric Pressure Plasma Jet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建彰,廖英志,盧彥文 | |
| dc.subject.keyword | 常壓噴射式電漿,氧化鋅薄膜,透明導電薄膜,鋁摻雜氧化鋅薄膜,噴霧熱解法,超音波霧化, | zh_TW |
| dc.subject.keyword | atmospheric pressure plasma jet,ZnO thin films,TCO,aluminium doped ZnO,spray pyrolysis,nebulizer, | en |
| dc.relation.page | 146 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-08-03 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 6.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
